On Extensions of Kenderov's Single-Valuedness Result for Monotone Maps and Quasimonotone Maps

Abstract : One of the most famous single-valuedness results for set-valued maps is due to Kenderov [Fund. Math., LXXXVIII (1975), pp. 61--69] and states that a monotone set-valued operator is single-valued at any point where it is lower semicontinuous. This has been extended in Christensen and Kenderov [Math. Scand., 54 (1984), pp. 70--78] to monotone maps satisfying a so-called $*$-property. Our aim in this work is twofold: first, to prove that the $*$-property assumption can be weakened, and second, to emphasize that these classical single-valuedness results for monotone operators can be obtained, in very simple way, as direct consequences of counterpart results proved for quasi-monotone operators in terms of single-directionality.
Type de document :
Article dans une revue
SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2014, 24 (2), pp.702-7013. 〈10.1137/120880215〉
Liste complète des métadonnées

https://hal-univ-perp.archives-ouvertes.fr/hal-01176923
Contributeur : Olivier Savoyat <>
Soumis le : jeudi 16 juillet 2015 - 11:29:11
Dernière modification le : jeudi 15 mars 2018 - 01:27:11

Identifiants

Collections

Citation

D. Aussel, Y. García. On Extensions of Kenderov's Single-Valuedness Result for Monotone Maps and Quasimonotone Maps. SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2014, 24 (2), pp.702-7013. 〈10.1137/120880215〉. 〈hal-01176923〉

Partager

Métriques

Consultations de la notice

35