S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

J. S. Ammiraju, M. Luo, J. L. Goicoechea, W. Wang, D. Kudrna et al., The Oryza bacterial artificial chromosome library resource: Construction and analysis of 12 deep-coverage large, 2006.

, Genome Res, vol.16, pp.140-147

B. Bartosch, D. Stefanidis, R. Myers, R. Weiss, C. Patience et al., Evidence and consequence of porcine endogenous retrovirus recombination, J. Virol, vol.78, pp.13880-13890, 2004.

J. L. Bennetzen, J. Ma, and K. M. Devos, Mechanisms of recent genome size variation in flowering plants, Ann. Bot. (Lond.), vol.95, pp.127-132, 2005.

D. S. Brar and G. S. Khush, Alien introgression in rice, Plant Mol. Biol, vol.35, pp.35-47, 1997.

N. Chantret, J. Salse, F. Sabot, S. Rahman, A. Bellec et al., Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops), Plant Cell, vol.17, pp.1033-1045, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00964165

N. Galtier, M. Gouy, and C. Gautier, SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny, Comput. Appl. Biosci, vol.12, pp.543-548, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00435028

B. S. Gaut, B. R. Morton, B. C. Mccaig, and M. T. Clegg, Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gen Adh parallel rate differences at the plastid gene rbcL, Proc. Natl. Acad. Sci, vol.93, pp.10274-10279, 1996.

S. Ge, T. Sang, B. R. Lu, and D. Y. Hong, International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome, Proc. Natl. Acad. Sci, vol.96, pp.793-800, 1999.

N. Jiang, Z. Bao, S. Temnykh, Z. Cheng, J. Jiang et al., Dasheng: A recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice, Genetics, vol.161, pp.1293-1305, 2002.

R. Kalendar, J. Tanskanen, S. Immonen, E. Nevo, and A. H. Schulman, Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence, Proc. Natl. Acad. Sci, vol.97, pp.6603-6607, 2000.

K. Kashkush, M. Feldman, and A. Levy, Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat, Nat. Genet, vol.33, pp.102-106, 2003.

A. Kumar and J. L. Bennetzen, Plant retrotransposons, Annu. Rev. Genet, vol.33, pp.479-532, 1999.

S. Kumar, K. Tamura, and M. Nei, MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment, Brief. Bioinform, vol.5, pp.150-163, 2004.

N. Lisitsyn, N. Lisitsyn, and M. Wigler, Cloning the differences between two complex genomes, Science, vol.259, pp.946-951, 1993.

J. Ma, K. M. Devos, and J. L. Bennetzen, Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice, Genome Res, vol.14, pp.860-869, 2004.

J. Ma, P. Sanmiguel, J. Lai, J. Messing, and J. L. Bennetzen, DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes, Genetics, vol.170, pp.1209-1220, 2005.

M. Nei and T. Gojobori, Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol. Biol. Evol, vol.3, pp.418-426, 1986.

O. Panaud, G. Magpantay, and S. R. Mccouch, A protocol for non-radioactive DNA labelling and detection in the RFLP analysis of rice and tomato using single-copy probes, Plant Mol. Biol. Rep, vol.11, pp.54-59, 1993.

O. Panaud, C. Vitte, J. Hivert, S. Muzlak, J. Talag et al., Characterization of transposable elements in the genome of rice (Oryza sativa L.) using Representational Difference Analysis (RDA), Mol. Genet. Genomics, vol.268, pp.113-121, 2002.

D. A. Petrov, Mutational equilibrium model of genome size evolution. Theor, Popul. Biol, vol.61, pp.531-544, 2002.

D. A. Petrov, E. R. Lozovskaya, and D. L. Hartl, High intrinsic rate of DNA loss in Drosophila, Nature, vol.384, pp.346-349, 1996.

P. Rice, I. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open Software Suite, Trends Genet, vol.16, pp.276-277, 2000.

K. Rutherford, J. Parkhill, J. Crook, T. Horsnell, P. Rice et al., Artemis: Sequence visualization and annotation, Bioinformatics, vol.16, pp.944-945, 2000.

P. Sanmiguel, A. Tikhonov, Y. K. Jin, N. Motchoulskaia, D. Zakharov et al., Nested retrotransposons in the intergenic regions of the maize genome, Science, vol.274, pp.765-768, 1996.

P. Sanmiguel, B. S. Gaut, A. Tikhonov, Y. Nakajima, and J. L. Bennetzen, The paleontology of intergene retrotransposons of maize, Nat. Genet, vol.20, pp.43-45, 1998.

A. H. Schulman and R. Kalendar, A movable feast: Diverse retrotransposons and their contribution to barley genome dynamics, Cytogenet. Genome Res, vol.110, pp.598-605, 2005.

K. Shirasu, A. H. Schulman, T. Lahaye, and P. Schulze-lefert, A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion, Genome Res, vol.10, pp.908-915, 2000.

E. L. Sonnhammer and R. Durbin, A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis, Gene, vol.167, pp.1-10, 1995.

C. A. Thomas, The genetic organization of chromosomes, Annu. Rev. Genet, vol.5, pp.237-256, 1971.

J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res, vol.25, pp.4876-4882, 1997.

A. P. Tikhonov, P. J. Sanmiguel, Y. Nakajima, N. D. Gorenstein, J. L. Bennetzen et al., Colinearity and its exceptions in orthologous ADH regions of maize and sorghum, Proc. Natl. Acad. Sci, vol.96, pp.7409-7414, 1999.

S. Uozu, H. Ikehashi, N. Ohmido, H. Ohtsubo, E. Ohtsubo et al., Repetitive sequences: Cause for variation in genome size and chromosome morphology in the genus Oryza, Plant Mol. Biol, vol.35, pp.791-799, 1997.

C. M. Vicient, A. Suoniemi, K. Anamthawat-jonsson, J. Tanskanen, A. Beharav et al., Retrotransposon BARE-1 and its role in genome evolution in the genus hordeum, Plant Cell, vol.11, pp.1769-1784, 1999.

C. Vitte and O. Panaud, Formation of Solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L, Cytogenet. Genome Res, vol.20, pp.91-107, 2003.

C. Vitte, T. Ishii, F. Lamy, D. S. Brar, and O. Panaud, Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa, L.). Mol. Genet. Genomics, vol.272, pp.504-511, 2004.

T. Wicker, N. Stein, L. Albar, C. Feuillet, E. Schlagenhauf et al., Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution, Plant J, vol.26, pp.307-316, 2001.

T. Wicker, N. Yahiaoui, R. Guyot, E. Schlagenhauf, Z. D. Liu et al., Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat, Plant Cell, vol.15, pp.1186-1197, 2003.

, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Arabidopsis Genome Initiative, vol.408, pp.796-815, 2000.

J. L. Bennetzen, Patterns in grass genome evolution, Curr. Opin. Plant Biol, vol.10, pp.176-181, 2007.

J. L. Bennetzen, J. Ma, and K. M. Devos, Mechanisms of recent genome size variation in flowering plants, Ann. Bot, vol.95, pp.127-132, 2005.

C. Chaparro, R. Guyot, A. Zuccolo, B. Piegu, and O. Panaud, RetrOryza: a database of the rice LTR-retrotransposons, Nucleic Acids Res, vol.35, pp.66-77, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164403

K. M. Devos, J. Ma, A. C. Pontaroli, L. H. Pratt, and J. L. Bennetzen, Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat, Proc. Natl Acad. Sci. USA, vol.102, pp.19243-19248, 2005.

B. Ewing and P. Green, Base-calling of automated sequencer traces using phred II. Error probabilities, Genome Res, vol.8, pp.186-194, 1998.

B. Ewing, L. Hillier, M. C. Wendl, and P. Green, Base-calling of automated sequencer traces using phred I. Accuracy assessment, Genome Res, vol.8, pp.175-185, 1998.

C. Feschotte, N. Jiang, and S. R. Wessler, Plant transposable elements: where genetics meets genomics, Nat. Rev. Genet, vol.3, pp.329-341, 2002.

N. Galtier, M. Gouy, and C. Gautier, SEAVIEW and PHYLO_ WIN: two graphics tools for sequence alignment and molecular phylogeny, Comput. Appl. Biosci, vol.12, pp.543-548, 1996.

J. C. Glaszmann, T. Mew, H. Hibino, C. K. Kim, T. J. Vergel-de-diosmew et al., Molecular variation as a diverse source of disease resistance in cultivated rice, Rice Genetics III. Proceedings of the Third International Rice Genetics Symposium, pp.460-465, 1996.

D. Gordon, C. Abajian, and P. Green, Consed: a graphical tool for sequence finishing, Genome Res, vol.8, pp.195-202, 1998.

C. Chaparro, R. Guyot, A. Zuccolo, B. Pié-gu, and O. Panaud, RetrOryza: a database of the rice LTR-retrotransposons, Nucleic Acids Res, vol.35, pp.66-70, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164403

C. Cheng, M. Daigen, and H. Hirochika, Epigenetic regulation of the rice retrotransposon Tos17, Mol. Genet. Genomics, vol.276, pp.378-390, 2006.

R. Cordaux and M. A. Batzer, The impact of retrotransposons on human genome evolution, Nat. Rev. Genet, vol.10, pp.691-703, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419189

C. Feschotte, Transposable elements and the evolution of regulatory networks, Nat. Rev. Genet, vol.9, pp.397-405, 2008.

C. Feschotte and E. J. Pritham, DNA transposons and the evolution of eukaryotic genomes, Annu. Rev. Genet, vol.41, pp.331-368, 2007.

A. J. Flavell, M. R. Knox, S. R. Pearce, and T. H. Ellis, Retrotransposonbased insertion polymorphisms (RBIP) for high throughput marker analysis, Plant J, vol.16, pp.643-650, 1998.

H. Hirochika, K. Sugimoto, Y. Otsuki, H. Tsugawa, and M. Kanda, Retrotransposons of rice involved in mutations induced by tissue culture, Proc. Natl. Acad. Sci. USA, vol.93, pp.7783-7788, 1996.

X. Huang, G. Lu, Q. Zhao, X. Liu, and B. Han, Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice, Plant Physiol, vol.148, pp.793-800, 2008.

N. Jiang, Z. Bao, X. Zhang, H. Hirochika, S. R. Eddy et al., An active DNA transposon family in rice, Nature, vol.421, pp.163-167, 2003.

J. Jurka, V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany et al., Repbase update: a database of eukaryotic repetitive elements, Cytogenet. Genome Res, vol.110, pp.462-467, 2005.

S. Kobayashi, N. Goto-yamamoto, and H. Hirochika, Retrotransposoninduced mutations in grape skin color, Science, vol.304, p.982, 2004.

M. Komatsu, K. Shimamoto, and J. Kyozuka, Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma, Plant Cell, vol.15, pp.1934-1944, 2003.

J. O. Korbel, A. E. Urban, and J. P. Affourtit, Paired-end mapping reveals extensive structural variation in the human genome, Science, vol.318, pp.420-426, 2007.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

M. Mirouze, J. Reinders, E. Bucher, T. Nishimura, K. Schneeberger et al., Selective epigenetic control of retrotransposition in Arabidopsis, Nature, vol.461, pp.427-430, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01917183

A. Miyao, Y. Iwasaki, H. Kitano, J. I. Itoh, M. Maekawa et al., A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes, Plant Mol. Biol, vol.63, pp.625-635, 2007.

S. Moon, K. H. Jung, D. E. Lee, W. Z. Jiang, H. J. Koh et al., Identification of active transposon dTok, a member of the hAT family, in rice, Plant Cell Physiol, vol.47, pp.1473-1483, 2006.

M. Morgante, Plant genome organisation and diversity: the year of the junk!, Curr. Opin. Biotechnol, vol.17, pp.168-173, 2006.

N. Picault, C. Chaparro, and B. Piegu, Identification of an active LTR retrotransposon in rice, Plant J, vol.58, pp.754-765, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00685656

, The Rice Annotation Project Database (RAP-DB): 2008 update, Rice Annotation Project, vol.36, pp.1028-1033, 2008.

P. Sanmiguel, A. Tikhonov, and Y. K. Jin, Nested retrotransposons in the intergenic regions of the maize genome, Science, vol.274, pp.765-768, 1996.

R. K. Slotkin and R. Martienssen, Transposable elements and the epigenetic regulation of the genome, Nat. Rev. Genet, vol.8, pp.272-285, 2007.

K. Tsugane, M. Maekawa, K. Takagi, H. Takahara, Q. Qian et al., An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice, Plant J, vol.45, pp.46-57, 2006.

C. Vitte, O. Panaud, and H. Quesneville, LTR retrotransposons in rice (Oryza sativa L.): recent burst amplifications followed by rapid DNA loss, BMC Genomics, vol.8, p.218, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02114382

H. Wang, Y. Chai, X. Chu, Y. Zhao, Y. Wu et al., Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability, BMC Plant Biol, vol.9, p.63, 2009.

T. Wicker, F. Sabot, and A. Hua-van, A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet, vol.8, pp.973-982, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169819

Q. Xia, Y. Guo, and Z. Zhang, Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx), Science, vol.326, pp.433-436, 2009.

H. Xiao, N. Jiang, E. Schaffner, E. J. Stockinger, and E. Van-der-knaap, A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit, Science, vol.319, pp.1527-1530, 2008.

A. A. Fofana, Rice yiel gap due to iron toxicity in west Africa, J Agron Crop Sci, vol.195, pp.66-76, 2009.

S. Banerjee and G. Chandel, Understanding the role of metal homeostasis related candidate genes in Fe/Zn uptake, transport and redistribution in rice using semi-quantitative RT-PCR, J Plant Mol Biol Biotechnol, vol.1, pp.33-46, 2011.

M. Becker and F. Asch, Iron toxicity in rice -conditions and management concepts, J Plant Nutr Soil Sci, vol.168, pp.558-573, 2005.

A. Belouchi, T. Kwan, and P. Gros, Cloning characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions, Plant Mol Biol, vol.33, pp.1085-1092, 1997.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J Roy Stat Soc B Met, vol.57, pp.289-300, 1995.

J. L. Bennetzen, Patterns in grass genome evolution, Curr Opin Plant Biol, vol.10, pp.176-181, 2007.

J. F. Briat, S. Lobréaux, N. Grignon, and G. Vansuyt, Regulation of plant ferritin synthesis: how and why, Cell Mol Life Sci, vol.56, pp.155-166, 1999.

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin Chem, vol.55, pp.611-622, 2009.

E. Butelli, C. Licciardello, Y. Zhang, J. Liu, S. Mackay et al., Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges, Plant Cell, vol.3, pp.1242-1255, 2012.

C. Camargo and O. F. Oliveira, Tolerance of wheat cultivars to different aluminum levels in nutrient solution and soil (in Portuguese with English abstract), Bragantia, vol.49, pp.21-23, 1981.

C. Chaparro, R. Guyot, A. Zuccolo, B. Piégu, and O. Panaud, RetrOryza: a database of the rice LTR-retrotransposons, Nucleic Acids Res, vol.35, pp.66-70, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164403

W. W. Chen, J. L. Yang, C. Qin, C. W. Jin, J. H. Mo et al., Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis, Plant Physiol, vol.154, pp.810-819, 2010.

A. Conesa, S. Götz, J. M. García-gómez, J. Terol, M. Talón et al., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, vol.21, pp.3674-3676, 2005.

E. L. Connolly and M. Guerinot, Iron stress in plants, Genome Biol, vol.3, p.1024, 2002.

C. Curie, G. Cassin, D. Couch, F. Divol, K. Higuchi et al., Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters, Ann Bot, vol.103, pp.1-11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00367118

B. Dabarni, J. F. Briat, P. B. Holm, S. Husted, S. Noeparvar et al., Dissecting plant iron homeostasis under short and long-term iron fluctuations, Biotechnol Adv, vol.31, pp.1292-1307, 2013.

C. Duc, F. Celler, S. Lobreaux, J. F. Briat, and F. Gaymard, Regulation of iron homeostasis in Arabidopsis thaliana by the clock regulator time for coffee, J Biol Chem, vol.284, pp.36271-36281, 2009.

M. El-baidouri and O. Panaud, Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution, Genome Biol Evol, vol.5, pp.954-965, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01218174

K. Engel, F. Asch, and M. Becker, Classification of rice genotypes based on their mechanisms of adaptation to iron toxicity, J Plant Nutr Soil Sci, vol.175, pp.871-881, 2012.

W. C. Fang, J. W. Wang, C. C. Lin, and C. H. Kao, Iron induction of lipid peroxidation and effects on antioxidative enzyme activities in rice leaves, Plant Growth Regul, vol.35, pp.75-80, 2001.

H. Feng, D. Guan, K. Sun, Y. Wang, T. Zhang et al., Expression and signal regulation of the alternative oxidase genes under abiotic stresses, Acta Biochim Biophys Sin, vol.45, pp.985-994, 2013.

C. Feschotte, N. Jiang, and S. R. Wessler, Plant transposable elements: where genetics meet genomics, Genetics, vol.3, pp.329-341, 2002.

R. Foster, T. Izawa, and N. H. Chua, Plant bZIP proteins gather at ACGT elements, FASEB J, vol.8, pp.192-200, 1994.

Y. Fu, W. Zhao, and Y. Peng, Induced expression of oryzain alpha gene encoding a cysteine proteinase under stress conditions, J Plant Res, vol.120, pp.465-469, 2007.

M. A. Grandbastien, Activation of plant retrotransposons under stress conditions, Trends Plant Sci, vol.3, pp.181-187, 1998.

P. J. Green, M. H. Yong, M. Cuozzo, Y. Kano-murakami, P. Silverstein et al., Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene, EMBO J, vol.7, pp.4035-4044, 1988.

A. K. Grennan, Abiotic stress in rice: an "omic" approach, Plant Physiol, vol.140, pp.1139-1141, 2006.

J. Gross, R. J. Stein, A. G. Fett-neto, and J. P. Fett, Iron homeostasis related genes in rice, Genet Mol Biol, vol.26, pp.477-497, 2003.

M. L. Guerinot, The ZIP family of metal transporters, Biochim Biophys Acta, vol.1465, pp.190-198, 2000.

K. Higo, Y. Ugawa, M. Iwamoto, and T. Korenaga, Plant cis-acting regulatory DNA elements (PLACE) database, Nucleic Acids Res, vol.27, pp.297-300, 1999.

H. Hirochika, K. Sugimoto, Y. Otsuki, H. Tsugawa, and M. Kanda, Retrotransposons of rice involved in mutations induced by tissue culture, Proc Natl Acad Sci U S A, vol.93, pp.7783-7788, 1996.

N. Huang, T. D. Sutliff, J. C. Litts, and R. L. Rodriguez, Classification and characterization of the rice alpha-amylase multigene family, Plant Mol Biol, vol.14, pp.655-668, 1990.

H. Inoue, M. Takahashi, T. Kobayashi, M. Suzuki, H. Nakanishi et al., Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice, Plant Mol Biol, vol.66, pp.193-203, 2008.

, International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome, Nature, vol.436, pp.793-800

Y. Ishimaru, M. Suzuki, T. Kobayashi, M. Takahashi, H. Nakanishi et al., OsZIP4, a novel zinc-regulated zinc transporter in rice, J Exp Bot, vol.56, pp.3207-3214, 2005.

Y. Ishimaru, M. Suzuki, T. Tsukamoto, K. Suzuki, M. Nakazono et al., Rice plants take up iron as an Fe 3+ -phytosiderophore and as Fe 2+, Plant J, vol.45, pp.335-346, 2006.

Y. Ishimaru, H. Masuda, K. Bashir, H. Inoue, T. Tsukamoto et al., Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese, Plant J, vol.62, pp.379-390, 2010.

Y. Ishimaru, S. H. Kakei, K. Bashir, Y. Sato, Y. Sato et al., A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele, J Biol Chem, vol.286, pp.24649-24655, 2011.

M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res, vol.40, pp.109-114, 2012.

S. A. Kim and M. L. Guerinot, Mining iron: iron uptake and transport in plants, FEBS Lett, vol.581, pp.2273-2280, 2007.

T. Kobayashi and N. K. Nishizawa, Iron uptake, translocation, and regulation in higher plants, Annu Rev Plant Biol, vol.63, pp.131-152, 2012.

S. Koike, H. Inoue, D. Mizuno, M. Takahashi, H. Nakanishi et al., OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem, Plant J, vol.39, pp.415-424, 2004.

A. Kumar and J. L. Bennetzen, Plant retrotransposons, Annu Rev Genet, vol.33, pp.479-532, 1999.

E. Kuzniak, The ascorbate-glutathione cycle and related redox signals in plant-pathogen interactions, 2010.

, Ascorbate-Glutathione Pathway and Stress Tolerance in Plants, pp.115-136

S. Lee and G. An, Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice, Plant Cell Environ, vol.32, pp.408-416, 2009.

S. Lee, S. A. Kim, J. Lee, M. L. Guerinot, and G. An, Zinc deficiency-inductible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice, Mol Cells, vol.29, pp.551-558, 2010.

J. M. Lelievre, L. O. Oliveira, and N. C. Nielsen, 5?CATGCAT-3? elements modulate the expression of glycinin genes, Plant Physiol, vol.98, pp.387-391, 1992.

P. Lingam, J. Mohrbacher, T. Brumbarova, T. Potuschak, C. Fink-straube et al., Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INTENSIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis, Plant Cell, vol.23, pp.1815-1829, 2011.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(?Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

J. Ma, K. M. Devos, and J. L. Bennetzen, Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice, Genome Res, vol.14, pp.860-869, 2004.

V. Majerus, P. Bertin, V. Swenden, A. Fortemps, S. Lobreaux et al., Organdependent responses of the African rice to short-term iron toxicity: ferritin regulation and antioxidative responses, Biol Plant, vol.51, pp.303-331, 2007.

A. Mangeon, C. Magioli, E. Tarré, V. Cardeal, C. Araujo et al., The tissue expression pattern of the AtGRP5 regulatory region is controlled by a combination of positive and negative elements, Plant Cell Rep, vol.29, pp.461-471, 2010.

K. A. Marrs, The functions and regulation of glutathione S-transferase in plants, Annu Rev Plant Physiol Plant Mol Biol, vol.47, pp.127-158, 1996.

H. Marschner, Functional analysis of transcription factors in Arabidopsis, Plant Cell Physiol, vol.50, pp.1232-1248, 1995.

K. Nakashima, L. S. Tran, D. Van-nguyen, M. Fujita, K. Maruyama et al., Functional analysis of NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice, Plant J, vol.51, pp.617-630, 2007.

K. Nakashima, J. A. Todaka, D. Maruyama, K. Goto, S. Shinozaki et al., Comparative functional analysis of six drought-responsive promoters in transgenic rice, Planta, vol.239, pp.47-60, 2014.

N. N. Narayanan, M. W. Vasconcelos, and M. A. Gruzak, Expression profiling of Oryza sativa metal homeostasis genes in different rice cultivars using a cDNA macroarray, Plant Physiol Biochem, vol.45, pp.277-286, 2007.

S. Nath, P. Panda, S. Mishra, M. Dey, S. Choudhury et al., Arsenic stress in rice: redox consequences and regulation by iron, Plant Physiol Biochem, vol.80, pp.203-210, 2014.

K. A. Nielsen and B. L. Moller, Cytochrome P450s in plants, Cytochrome P450: structure, mechanism, and biochemistry, pp.553-583, 2005.

J. Oliveros, T. P. Michael, M. E. Hudson, E. A. Kay, J. Chory et al., Cytochrome P450 monooxygenases as reporters for circadian-regulated pathways, VENNY: an interactive tool for comparing lists with Venn Diagrams, vol.150, pp.858-878, 2007.

S. Y. Park, J. W. Yu, J. S. Park, J. Li, S. C. Yoo et al., The senescence-induced staygreen protein regulates chlorophyll degradation, Plant Cell, vol.19, pp.1649-1664, 2007.

C. Pegoraro, D. R. Farias, L. M. Mertz, R. S. Santos, L. C. Maia et al., Ethylene response factors gene regulation and expression profiles under different stresses in rice, Theor Exp Plant Physiol, vol.25, issue.4, pp.261-274, 2013.

W. Pi, X. Zhu, M. Wu, Y. Wang, S. Fulzele et al., Long-range function of an intergenic retrotransposon, Proc Natl Acad Sci U S A, vol.107, pp.12992-12997, 2007.

N. Picault, C. Chaparro, B. Piegu, W. Stenger, D. Formey et al., Identification of an active LTR retrotransposon in rice, Plant J, vol.58, pp.754-765, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00685656

A. Polle, A. Schützendübel, M. Quinet, D. Vromman, A. Clippe et al., Combined transcriptomic and physiological approaches reveal strong differences between short-and long-term response of rice (Oryza sativa) to iron toxicity, Topics in current genetics, plant responses to abiotic stress, vol.4, pp.1837-1859, 2003.

, R Development Core Team, R Foundation for Statistical Computing, 2012.

A. Ranieri, A. Castagna, F. Scebba, M. Careri, I. Zagnoni et al., Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess, Plant Physiol Biochem, vol.43, pp.45-54, 2005.

F. K. Ricachenevsky, R. A. Sperotto, P. K. Menguer, and J. P. Fett, Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence, Mol Biol Rep, vol.37, pp.3735-3745, 2010.

F. K. Ricachenevsky, R. A. Sperotto, P. K. Menguer, A. R. Sperb, K. L. Lopes et al., ZINC-INDUCED FACILIATTOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs, BMC Plan Biol, vol.11, p.20, 2011.

M. T. Romanish, W. M. Lock, L. N. Van-de-lagemaat, C. A. Dunn, and D. L. Mager, Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution, PLoS Genet, vol.3, p.10, 2007.

S. Rombauts, K. Florquin, M. Lescot, K. Marchal, P. Rouze et al., Computational approaches to identify promoters and cis-regulatory elements in plant genomes, Plant Physiol, vol.132, pp.1162-1176, 2003.

F. Sabot, N. Picault, M. El-baidouri, C. Llauro, C. Chaparro et al., Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data, Plant J, vol.66, pp.241-246, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02114338

H. Saika, K. Ohtsu, S. Hamanaka, M. Nakazono, N. Tsutsumi et al., AOX1c, a novel rice gene for alternative oxidase; comparison with rice AOX1a and AOX1b, Genes Genet Syst, vol.77, pp.31-38, 2002.

M. A. Schuler, The role of cytochrome P450 monooxygenases in plant-insect interactions, Plant Physiol, vol.112, pp.1411-1419, 1996.

V. C. Da-silveira, C. Fadanelli, R. A. Sperotto, R. J. Stein, L. A. Basso et al., Role of ferritin in the rice tolerance to iron overload, Sci Agric, vol.66, pp.549-555, 2009.

R. A. Sperotto, T. Boff, G. L. Duarte, L. S. Santos, M. A. Grusak et al., Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains, J Plant Physiol, vol.167, pp.1500-1506, 2010.

R. J. Stein, G. L. Duarte, M. G. Spohr, S. Lopes, and J. P. Fett, Distinct physiological responses of two rice cultivars subjected to iron toxicity under field conditions, Ann Appl Biol, vol.154, pp.269-277, 2009.

R. J. Stein, J. P. Fett, and F. K. Ricachenevsky, Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2), Plant Sci, vol.177, pp.563-569, 2009.

S. Takagi, Naturally occurring iron-chelating compounds in oat-and rice-root washing. I: activity measurement and preliminary characterization, Soil Sci Plant Nutr, vol.22, pp.423-433, 1976.

S. Takagi, K. Nomoto, and T. Takemoto, Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants, J Plant Nutri, vol.7, pp.1-5, 1984.

R. Takahashi, Y. Ishimaru, T. Senoura, H. Shimo, S. Ishikawa et al., The OsNRAMP1 iron transporter is involved in Cd accumulation in rice, J Exp Bot, vol.62, pp.4843-4850, 2011.

S. Takeda, K. Sugimoto, H. Otsuki, and H. Hirochika, A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors, Plant J, vol.18, pp.383-393, 1999.

M. Tausz, H. Sircelj, and D. Grill, The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?, J Exp Bot, vol.55, pp.1955-1962, 2004.

M. J. Tedesco, C. Gianello, C. A. Bissani, H. Bohnen, and S. J. Volkweiss, Análise de solo, plantas e outros materiais, Boletim Técnico, vol.147, p.5, 1995.

P. Thongbai and B. A. Goodman, Free radical generation and post anoxic injury in an iron toxic soil, J Plant Physiol, vol.23, pp.1887-1990, 2000.

D. Todaka, K. Nakashima, K. Shinozaki, and K. Yamaguchi-shinozaki, Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice, Rice, vol.5, p.6, 2012.

T. Tsutsui, N. Yamaji, F. Ma, and J. , Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice, Plant Physiol, vol.156, pp.925-931, 2011.

T. Ulmasov, G. Hagen, and T. J. Guilfoyle, Dimerization and DNA binding of auxin response factors, Plant J, vol.19, pp.309-319, 1999.

D. Victoria, F. C. Bervald, C. , D. Maia, L. C. et al., Phylogenetic relationships and selective pressure on gene families related to iron homeostasis in land plants, Genome, vol.55, pp.883-900, 2012.

J. L. Wan, H. Q. Zhai, J. M. Wan, and H. Ikehashi, Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L, vol.131, pp.201-206, 2003.

H. Wang, Y. Chai, X. Chu, Y. Zhao, Y. Wu et al., Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability, BMC Plant Biol, vol.9, p.63, 2009.

X. Wang, H. He, L. Li, R. Chen, X. W. Deng et al., NMPP: a user-customized nimblegen microarray data processing pipeline, Bioinformatics, vol.22, pp.2955-2957, 2006.

M. Wang, W. Gruissem, and N. K. Bhullar, Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice, Front Plant Sci, vol.4, p.156, 2013.

D. Werck-reichhart, S. Bak, and S. Paquette, Cytochromes p450, vol.1, p.28, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00123631

J. Wu, C. Wang, L. Zheng, L. Wang, Y. Chen et al., Ethylene is involved in the regulation of iron-acquisition-related genes in Oryza sativa, J Exp Bot, vol.62, pp.667-674, 2011.

A. Yang, Y. Li, Y. Xu, and W. H. Zhang, A receptor-like protein RMC is involved in regulation of iron acquisition in rice, J Exp Bot, vol.16, pp.5009-5020, 2013.

K. Yokosho, N. Yamaji, D. Ueno, N. Mitani, and J. F. Ma, OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice, Plant Physiol, vol.149, pp.297-305, 2009.

J. Yu, S. Hu, J. Wang, G. K. Wong, S. Li et al., A draft sequence of the rice genome, Oryza sativa L. ssp. Indica). Science, vol.296, pp.79-92, 2002.

M. Yuan, X. Li, J. Xiao, and S. Wang, Molecular and functional analyses of COPT/ Ctr-type copper transporter-like gene family in rice, BMC Plant Biol, vol.11, p.69, 2011.

M. Zancani, C. Peresson, A. Biroccio, G. Federici, A. Urbani et al., Evidence for the presence of ferritin in plant mitochondria, Eur J Biochem, vol.271, pp.3657-3664, 2004.

C. Baron and P. C. Zambryski, The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme?, Annu. Rev. Genet, vol.29, pp.107-129, 1995.

Y. Bashan, Inoculants of plant growth-promoting bacteria for use in agriculture, Biotechnol. Adv, vol.16, 1998.

Y. Bashan and L. E. De-bashan, How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment, Adv. Agron, vol.108, pp.77-136, 2010.

Y. Bashan, G. Holguin, and L. E. De-bashan, Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003), Can. J. Microbiol, vol.50, pp.521-577, 2004.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc, vol.57, pp.289-300, 1995.

D. Blaha, C. Prigent-combaret, M. S. Mirza, and Y. Moënne-loccoz, Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography, FEMS Microbiol. Ecol, vol.56, pp.455-470, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00124530

A. B. Bleecker and H. Kende, Ethylene: a gaseous signal molecule in plants, Annu. Rev. Cell Dev. Biol, vol.16, pp.1-18, 2000.

B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics, vol.19, pp.185-193, 2003.

S. Bordiec, S. Paquis, H. Lacroix, S. Dhondt, E. Ait-barka et al., Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions, J. Exp. Bot, vol.62, pp.595-603, 2011.

L. C. Brusamarello-santos, F. Pacheco, S. M. Aljanabi, R. A. Monteiro, L. M. Cruz et al., Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae, Plant Soil, vol.356, pp.113-125, 2011.

P. Buscaill and S. Rivas, Transcriptional control of plant defence responses, Curr. Opin. Plant Biol, vol.20, pp.35-46, 2014.

P. Cao, K. Jung, D. Choi, D. Hwang, J. Zhu et al., The rice oligonucleotide array database: an atlas of rice gene expression, Rice, vol.5, p.17, 2012.

F. Cassán, D. Perrig, V. Sgroy, O. Masciarelli, C. Penna et al., Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.), Eur. J. Soil Biol, vol.45, pp.28-35, 2009.

A. Chamam, H. Sanguin, F. Bellvert, G. Meiffren, G. Comte et al., Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association, Phytochemistry, vol.87, pp.65-77, 2013.

C. Chaparro, R. Guyot, A. Zuccolo, B. Piegu, and O. Panaud, RetrOryza: a database of the rice LTR-retrotransposons, Nucleic Acids Res, vol.35, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164403

S. T. Chisholm, G. Coaker, B. Day, and B. J. Staskawicz, Host-microbe interactions: shaping the evolution of the plant immune response, Cell, vol.124, pp.803-814, 2006.

I. Damiani, F. Baldacci-cresp, J. Hopkins, E. Andrio, S. Balzergue et al., Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes, New Phytol, vol.194, pp.511-522, 2012.

G. Desbrosses, C. Contesto, F. Varoquaux, M. Galland, and B. Touraine, , 2009.

, PGPR-Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control, Plant Signal. Behav, vol.4, pp.321-323

B. Drogue, H. Sanguin, S. Borland, C. Prigent-combaret, and F. Wisniewski-dyé, Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots, FEMS Microbiol. Ecol, vol.87, pp.543-555, 2014.

M. El-baidouri and O. Panaud, Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution, Genome Biol. Evol, vol.5, pp.954-965, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01218174

A. Elbeltagy, K. Nishioka, T. Sato, H. Suzuki, B. Ye et al., Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species, Appl. Environ. Microbiol, vol.67, pp.5285-5293, 2001.

H. El-zemrany, S. Czarnes, P. D. Hallett, S. Alamercery, R. Bally et al., Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1, Plant Soil, vol.291, pp.109-118, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00128647

L. E. Fuentes-ramirez and J. Caballero-mellado, Bacterial biofertilizers, PGPR: Biocontrol and Biofertilization, pp.143-172, 2012.

M. Galland, L. Gamet, F. Varoquaux, B. Touraine, and G. Desbrosses, The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196, Plant Sci, vol.190, pp.74-81, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00776558

B. R. Glick, Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase, FEMS Microbiol. Lett, vol.251, pp.1-7, 2005.

T. Heulin, A. Guckert, and J. Balandreau, Stimulation of root exudation of rice seedlings by Azospirillum strains: carbon budget under gnotobiotic conditions, Biol. Fertil. Soils, vol.4, pp.9-14, 1987.

, Frontiers in Plant Science | Plant-Microbe Interaction, vol.5, 2014.

R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-barclay, K. J. Antonellis et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics, vol.4, pp.249-264, 2003.

T. Kaneko, K. Minamisawa, T. Isawa, H. Nakatsukasa, H. Mitsui et al., Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510, DNA Res, vol.17, pp.37-50, 2010.

A. Kumar, A. Prakash, and B. N. Johri, Bacillus as PGPR in crop ecosystem, Bacteria in Agrobiology: Crop Ecosystems, 2011.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 ? CT method, Methods, vol.25, pp.402-408, 2001.

B. Lugtenberg and F. Kamilova, Plant-growth-promoting rhizobacteria, Annu. Rev. Microbiol, vol.63, pp.541-556, 2009.

S. Marcel, R. Sawers, E. Oakeley, H. Angliker, and U. Paszkowski, Tissueadapted invasion strategies of the rice blast fungus Magnaporthe oryzae, Plant Cell, vol.22, pp.3177-3187, 2010.

L. Miché, F. Battistoni, S. Gemmer, M. Belghazi, and B. Reinhold-hurek, Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp, Mol. Plant. Microbe Interact, vol.19, pp.502-511, 2006.

E. J. Michaud, M. J. Vugt, S. J. Van-bultman, H. O. Sweet, M. T. Davisson et al., Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage, Genes Dev, vol.8, pp.1463-1472, 1994.

J. E. Van-de-mortel, R. C. De-vos, E. Dekkers, A. Pineda, L. Guillod et al., Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101, Plant Physiol, vol.160, pp.2173-2188, 2012.

H. E. O'brien, S. Thakur, and D. S. Guttman, Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective, Annu. Rev. Phytopathol, vol.49, pp.269-289, 2011.

N. Picault, C. Chaparro, B. Piegu, W. Stenger, D. Formey et al., Identification of an active LTR retrotransposon in rice, Plant J, vol.58, pp.754-765, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00685656

C. M. Pieterse, A. Leon-reyes, S. Van-der-ent, and S. C. Van-wees, Networking by small-molecule hormones in plant immunity, Nat. Chem. Biol, vol.5, pp.308-316, 2009.

J. Popovici, V. Walker, C. Bertrand, F. Bellvert, M. P. Fernandez et al., Strain specificity in the Myricaceae-Frankia symbiosis is correlated to plant root phenolics, Funct. Plant Biol, vol.38, pp.682-689, 2011.

C. Prigent-combaret, D. Blaha, J. F. Pothier, L. Vial, M. Poirier et al., Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria, Curr. Opin. Plant Biol, vol.65, pp.435-443, 2008.

T. Tanaka, B. A. Antonio, S. Kikuchi, T. Matsumoto, and Y. Nagamura, The Rice Annotation Project Database (RAP-DB): 2008 update, Rice Annotation Project, vol.36, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00300215

A. E. Richardson, J. Barea, A. M. Mcneill, and C. Prigent-combaret, Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms, Plant Soil, vol.321, pp.305-339, 2009.
URL : https://hal.archives-ouvertes.fr/halsde-00525548

M. Rosenblueth and E. Martínez-romero, Bacterial endophytes and their interactions with hosts, Mol. Plant. Microbe Interact, vol.19, pp.827-837, 2006.

B. Saharan and V. Nehra, Plant growth promoting rhizobacteria: a critical review, Life Sci. Med. Res, pp.1-30, 2011.

J. Schumacher and P. Tudzynski, Morphogenesis and infection in Botrytis cinerea, pp.225-241, 2012.

B. Schwessinger and C. Zipfel, News from the frontline: recent insights into PAMP-triggered immunity in plants, Curr. Opin. Plant Biol, vol.11, pp.389-395, 2008.

S. E. Smith and D. J. Read, Mycorrhizal Symbiosis, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01268065

E. Somers, J. Vanderleyden, and M. Srinivasan, Rhizosphere bacterial signalling: a love parade beneath our feet, Crit. Rev. Microbiol, vol.30, pp.205-240, 2004.

M. J. Soto, A. Domínguez-ferreras, D. Pérez-mendoza, J. Sanjuán, and J. Olivares, Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions, Cell. Microbiol, vol.11, pp.381-388, 2009.

S. Spaepen, S. Bossuyt, K. Engelen, K. Marchal, and J. Vanderleyden, Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense, New Phytol, vol.201, pp.850-861, 2014.

O. Steenhoudt and J. Vanderleyden, Azospirillum, a free-living nitrogenfixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects, FEMS Microbiol. Rev, vol.24, pp.487-506, 2000.

D. Thomas-bauzon, P. Weinhard, P. Villecourt, and J. Balandreau, The spermosphere model. I. Its use in growing, counting, and isolating N 2 -fixing bacteria from the rhizosphere of rice, Can. J. Microbiol, vol.28, pp.922-928, 1982.

J. Vacheron, G. Desbrosses, M. Bouffaud, B. Touraine, Y. Moënne-loccoz et al., Plant growth-promoting rhizobacteria and root system functioning, Front. Plant Sci, vol.4, p.356, 2013.

L. C. Van-loon, P. A. Bakker, and C. M. Pieterse, Systemic resistance induced by rhizosphere bacteria, Annu. Rev. Phytopathol, vol.36, pp.453-483, 1998.

S. C. Van-wees, S. Van-der-ent, and C. M. Pieterse, Plant immune responses triggered by beneficial microbes, Curr. Opin. Plant Biol, vol.11, pp.443-448, 2008.

B. W. Verhagen, J. Glazebrook, T. Zhu, H. Chang, L. C. Van-loon et al., The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis, Mol. Plant. Microbe Interact, vol.17, pp.895-908, 2004.

V. Walker, C. Bertrand, F. Bellvert, Y. Moënne-loccoz, R. Bally et al., Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum, New Phytol, vol.189, pp.494-506, 2011.
URL : https://hal.archives-ouvertes.fr/halsde-00529161

V. Walker, O. Couillerot, A. V. Felten, F. Bellvert, J. Jansa et al., Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions, Plant Soil, vol.356, pp.151-163, 2012.
URL : https://hal.archives-ouvertes.fr/halsde-00723509

D. Walters and M. Heil, Costs and trade-offs associated with induced resistance, Physiol. Mol. Plant Pathol, vol.71, pp.3-17, 2007.

D. Wang, K. Pajerowska-mukhtar, A. H. Culler, D. , and X. , Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway, Curr. Biol, vol.17, pp.1784-1790, 2007.

Y. Wang, Y. Ohara, H. Nakayashiki, Y. Tosa, and S. Mayama, Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis, Mol. Plant Microbe Interact, vol.18, pp.385-396, 2005.

F. Wisniewski-dyé, K. Borziak, G. Khalsa-moyers, G. Alexandre, L. O. Sukharnikov et al., Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments, PLoS Genet, vol.7, p.1002430, 2011.

F. Wisniewski-dyé, B. Drogue, S. Borland, and C. Prigent-combaret, Azospirillum-plant interaction: from root colonization to plant growth promotion, Beneficial Plant-Microbial Interactions: Ecology and Applications, pp.237-269, 2013.

F. Wisniewski-dyé, L. Lozano, E. Acosta-cruz, S. Borland, B. Drogue et al., Genome sequence of Azospirillum www, vol.5, 2012.

, An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III, Bot J Linn Soc, vol.161, pp.105-121, 2009.

J. L. Bennetzen, Transposable element contributions to plant gene and genome evolution, Plant Mol Biol, vol.42, pp.251-269, 2000.

X. Diao, M. Freeling, and D. Lisch, Horizontal transfer of a plant transposon, PLoS Biol, vol.4, p.5, 2006.

T. H. Eickbush and H. S. Malik, Origin and evolution of retrotransposons, pp.1111-1144, 2002.

M. El-baidouri and O. Panaud, Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01218174

, Genome Biol Evol, vol.5, pp.954-965

D. Ellinghaus, S. Kurtz, and U. Willhoeft, LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons, BMC Bioinformatics, vol.9, p.18, 2008.

C. Feschotte, Transposable elements and the evolution of regulatory networks, Nat Rev Genet, vol.9, pp.397-405, 2008.

D. J. Finnegan, Transposable elements in eukaryotes, Int Rev Cytol, vol.93, pp.281-326, 1985.

N. Galtier, M. Gouy, and C. Gautier, SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny, Comput Appl Biosci, vol.12, pp.543-548, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00435028

C. Gilbert, S. Schaack, J. K. Pace, P. J. Brindley, and C. Feschotte, A role for hostparasite interactions in the horizontal transfer of transposons across phyla, Nature, vol.464, pp.1347-1350, 2010.

S. Kobayashi, N. Goto-yamamoto, and H. Hirochika, Retrotransposoninduced mutations in grape skin color, Science, vol.304, p.982, 2004.

S. Kuraku, H. Qiu, and A. Meyer, Horizontal transfers of Tc1 elements between teleost fishes and their vertebrate parasites, lampreys, Genome Biol Evol, vol.4, pp.929-936, 2012.

J. Ma and J. L. Bennetzen, Rapid recent growth and divergence of rice nuclear genomes, Proc Natl Acad Sci, vol.101, pp.12404-12410, 2004.

V. Miele, S. Penel, and L. Duret, Ultra-fast sequence clustering from similarity networks with SiLiX, BMC Bioinformatics, vol.12, p.116, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00698365

J. P. Mower, S. Stefanovi-c, G. J. Young, and J. D. Palmer, Plant genetics: gene transfer from parasitic to host plants, Nature, vol.432, pp.165-166, 2004.

B. Piegu, R. Guyot, N. Picault, A. Roulin, A. Sanyal et al., Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice, Genome Res, vol.16, pp.1262-1269, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164404

E. T. Prak and H. H. Kazazian, Mobile elements and the human genome, Nat Rev Genet, vol.1, pp.134-144, 2000.

R. Rebollo, M. T. Romanish, and D. L. Mager, Transposable elements: an abundant and natural source of regulatory sequences for host genes, Annu Rev Genet, vol.46, pp.21-42, 2012.

M. Rigal and O. Mathieu, A ''mille-feuille'' of silencing: epigenetic control of transposable elements, Biochim Biophys Acta, vol.1809, pp.452-458, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01917175

E. Rocha, With a little help from prokaryotes, Science, vol.8, pp.1154-1155, 2013.

A. Roulin, B. Piegu, P. M. Fortune, F. Sabot, D. Hont et al., Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae, BMC Evol Biol, vol.9, p.58, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00693471

S. Schaack, C. Gilbert, and C. Feschotte, Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution, Trends Ecol Evol, vol.25, pp.537-546, 2010.

R. K. Slotkin and R. Martienssen, Transposable elements and the epigenetic regulation of the genome, Nat Rev Genet, vol.8, pp.272-285, 2007.

B. F. Sun, J. H. Xiao, S. He, L. Liu, R. W. Murphy et al., Multiple interkingdom horizontal gene transfers in Pyrenophora and closely related species and their contributions to phytopathogenic lifestyles, PLoS ONE, vol.8, p.60029, 2013.

C. Vitte and O. Panaud, LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model, Cytogenet Genome Res, vol.110, pp.91-107, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00168793

G. L. Wallau, M. F. Ortiz, and E. L. Loreto, Horizontal transposon transfer in eukarya: detection, bias, and perspectives, Genome Biol Evol, vol.4, pp.689-699, 2012.

A. M. Walsh, R. D. Kortschak, M. G. Gardner, T. Bertozzi, and D. L. Adelson, Widespread horizontal transfer of retrotransposons, Proc Natl Acad Sci, vol.110, pp.1012-1016, 2013.

T. Wicker, F. Sabot, A. Hua-van, J. L. Bennetzen, P. Capy et al., A unified classification system for eukaryotic transposable elements, Nat Rev Genet, vol.8, pp.973-982, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169819

Z. Zhang, J. Li, X. Q. Zhao, J. Wang, G. Wong et al., KaKs_Calculator: calculating Ka and Ks through model selection and model averaging, Genomics Proteomics Bioinformatics, vol.4, pp.259-263, 2006.

N. Zhang, L. Zeng, H. Shan, and H. Ma, Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms, New Phytol, vol.195, pp.923-937, 2012.

L. Mamy, G. B. Barriuso, and E. , Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops, Environ Pollut, vol.158, pp.3172-3178, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01192142

H. Chaabane, E. Vulliet, F. Joux, F. Lantoine, C. P. Cooper et al., Photodegradation of sulcotrione in various aquatic environments and toxicity of its photoproducts for some marine micro-organisms, Water Res, vol.41, pp.1781-1789, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00259035

H. Chaabane, E. Vulliet, C. Calvayrac, C. M. Coste, and J. F. Cooper, Behaviour of sulcotrione and mesotrione in two soils, Pest Manag Sci, vol.64, pp.86-93, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00509284

R. Cherrier, C. Perrin-ganier, and M. Schiavon, Degradation of sulcotrione in a brown soil with various organic matters, Agronomie, vol.24, pp.29-33, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01486354

L. Maeghe, E. M. Desmet, and R. Bulcke, Soil activity and persistence of sulcotrione and mesotrione, Commun Agric Appl Biol Sc, vol.69, pp.41-48, 2004.

J. Rouchaud, A. Thirion, D. Callens, and R. Bulcke, Soil dissipation of the post-emergence herbicide sulcotrione in maize crops treated with organic fertilizers, Bull Environ Contam Toxicol, vol.57, pp.398-405, 1996.

J. Rouchaud, O. Neus, R. Bulcke, K. Cools, and H. Eelen, Sulcotrione soil metabolism in summer corn crops, Bull Environ Contam Toxicol, vol.61, pp.669-676, 1998.

J. Rouchaud, O. Neus, D. Callens, and R. Bulcke, Sulcotrione soil persistence and mobility in summer maize and winter wheat crops, Weed Res, vol.38, pp.361-371, 1998.

H. Chaabane, J. F. Cooper, A. L. Coste, and C. M. , Influence of soil properties on the adsorption-desorption of sulcotrione and its hydrolysis metabolites on various soils, J Agric Food Chem, vol.53, pp.4091-4095, 2005.

S. Durand, P. Amato, A. M. Delort, B. Combourieu, and P. Besse-hogan, First isolation and characterization of a bacterial strain that biotransforms the herbicide mesotrione, Lett Appl Microbiol, vol.43, pp.222-228, 2006.

S. Durand, B. Legeret, A. Martin, M. Sancelme, A. Delort et al., Biotransformation of the triketone herbicide mesotrione by a Bacillus strain. Metabolite profiling using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry, Rapid Commun Mass Spectrom, vol.20, pp.2603-2613, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00118463

S. Durand, M. Sancelme, P. Besse-hoggan, and B. Combourieu, Biodegradation pathway of mesotrione: complementarities of NMR, LC-NMR and LC-MS for qualitative and quantitative metabolic profiling, Chemosphere, vol.81, pp.372-380, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530557

I. Batisson, O. Crouzet, P. Besse-hoggan, M. Sancelme, J. F. Mangot et al., Isolation and characterization of mesotrionedegrading Bacillus sp. from soil, Environ Pollut, vol.157, pp.1195-1201, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00365544

O. Crouzet, I. Batisson, P. Besse-hoggan, F. Bonnemoy, C. Bardot et al., Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach, Soil Biol Biochem, vol.42, pp.193-202, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00444981

N. Mashimoto, T. Aoyama, and T. Shiori, New methods and reagents in organic synthesis. A simple efficient preparation of methyl esters with trimethylsilyldiazomethane (TMSCHN 2 ) and its application to gas chromatographic analysis of fatty acids, Chem Pharm Bull, vol.29, pp.1475-1478, 1981.

E. Ferreira, A. N. Dusi, J. R. Costa, G. R. Xavier, and R. Ng, Assessing insecticide and fungicide effects on the culturable soil bacterial community by analyses of variance of their DGGE fingerprinting data, Eur J Soil Biol, vol.45, pp.466-472, 2009.

S. Rousseaux, A. Hartmann, and G. Soulas, Isolation and characterisation of a new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils, FEMS Microbiol Ecol, vol.36, pp.211-222, 2001.

M. Devers, S. Henry, A. Hartmann, M. , and F. , Horizontal gene transfer of atrazine-degrading genes (atz) from Agrobacterium tumefaciens St96-4 Padp::Tn5 to bacteria of maize-cultivated soil, Pest Manag Sc, vol.61, pp.870-880, 2005.

D. Cheneby, S. Perrez, C. Devroe, S. Hallet, Y. Couton et al., Denitrifying bacteria in bulk and maize-rhizospheric soil: diversity and N 2 O-reducing abilities, Can J Microbiol, vol.50, pp.469-474, 2004.

V. Gurtler and V. A. Stanisich, New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region, Microbiology, vol.142, pp.3-16, 1996.

J. Versalovic, T. R. Koeuth, and J. Lupski, Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes, Nucleic Acids Res, vol.19, pp.6823-6831, 1991.

?. Genbank, , 2011.

J. D. Thompson, T. J. Gibson, F. Plewniak, J. F. Higgins, and D. G. , The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res, vol.24, pp.4876-4882, 1997.

G. Perriere and M. Gouy, WWW-Query: an on-line retrieval system for biological sequence banks, Biochimie, vol.78, pp.364-369, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00435034

R. Cherrier, A. Boivin, C. Perrin-ganier, and M. Schiavon, Sulcotrione versus atrazine transport and degradation in soil columns, Pest Manag Sci, vol.61, pp.899-904, 2005.

F. Govantes, V. García-gonzalez, O. Porrua, A. I. Platero, A. Jimenezfernandez et al., Regulation of the atrazine-degradative genes in Pseudomonas sp. strain ADP, FEMS Microbiol Lett, vol.310, pp.1-8, 2010.

T. El-sebai, B. Lagacherie, G. Soulas, M. , and F. , Isolation and characterisation of an isoproturon-mineralising Methylopila sp. TES from French agricultural soil, FEMS Microbiol Lett, vol.239, pp.103-110, 2004.

S. Hussain, M. Devers-lamrani, E. Azhari, N. , M. et al., Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil, Biodegradation, vol.22, pp.637-650, 2011.

H. Yano, C. E. Garruto, M. Sota, Y. Ohtsubo, Y. Nagata et al., Complete sequence determination combined with analysis of transposition/site-specific recombination events to explain genetic organization of IncP-7 TOL plasmid pWW53 and related mobile genetic elements, J Mol Biol, vol.369, pp.11-26, 2007.

W. Dangel, A. Tschech, and G. Fuchs, Enzyme reactions involved in anaerobic cyclohexanol metabolism by a denitrifying Pseudomonas species, Arch Microbiol, vol.62, pp.3245-3250, 1989.

G. Grogan, Diketone hydrolases. International Symposium on Biocatalysis and Biotransformations, pp.73-82, 2002.

G. Grogan, Emergent mechanistic diversity of enzyme-catalysed [beta]-Diketone cleavage, Biochem J, vol.388, pp.721-730, 2005.

M. Vaneechoutte, R. Rossau, P. De-vos, M. Gillis, D. Janssens et al., Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA), FEMS Microbiol Lett, vol.72, pp.227-233, 1992.

M. Vaneechoutte, D. Beenhouwer, H. Claeys, G. Verschraegen, G. et al., Identification of Mycobacterium species by using amplified ribosomal DNA-restriction analysis, J Clin Microbiol, vol.31, pp.2061-2065, 1993.

A. J. Martinez-murcia, A. Sg, and F. Rodriguez-valera, Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments, FEMS Microbiol Ecol, vol.36, pp.247-256, 1995.

F. Martin-laurent, L. Philippot, S. Hallet, R. Chaussod, J. C. Germon et al., DNA extraction from soils: old bias for new microbial diversity analysis method, Appl Environ Microbiol, vol.67, pp.2354-2359, 2001.

R. Mandelbaum, A. D. Wackett, and L. P. , Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine, Appl Environ Microbiol, vol.61, pp.1451-1457, 1995.

D. D. Daugherty and K. Sf, Degradation of 2,4-dichlorophenoxyacetic acid by Pseudomonas cepacia DBO1(pRO101) in a dual-substrate chemostat, Appl Environ Microbiol, vol.60, pp.3261-3267, 1994.

C. M. Kamanavalli and H. Z. Ninnekar, Biodegradation of propoxur by Pseudomonas species, World J Microbiol Biotechnol, vol.16, pp.329-331, 2000.

C. M. Thomas and K. M. Nielsen, Mechanisms and barriers to horizontal gene transfer between bacteria, Nat RevMicrobiol, vol.3, pp.711-721, 2005.

L. S. Frost, R. Leplae, A. O. Summers, and A. Toussaint, Mobile genetic elements: the agents of open source evolution, Nat Rev Microbiol, vol.3, pp.722-732, 2005.

N. Ogawa, A. M. Chackrabarty, O. Zaborina, and D. Plasmid, Funnell BE and Philipps GJ, pp.341-392, 2004.

P. A. Williams, R. M. Jones, and G. J. Zylstra, Genomics of catabolic plasmids, in Pseudomonas, vol.1, pp.165-195, 2004.

H. Yano, C. E. Garruto, M. Sota, Y. Ohtsubo, Y. Nagata et al., Complete sequence determination combined with analysis of transposition/site-specific recombination events to explain genetic organization of IncP-7 TOL plasmid pWW53 and related mobile genetic elements, J Mol Biol, vol.369, pp.11-26, 2007.

, Comparaison morphologique des 12 espèces de riz dans le genre Oryza au stade de floraison, vol.15

, Nous allons utiliser ces différentes caractéristiques des transposases pour développer notre approche. Parmi les différents éléments de classe II

, Nous pourrons ainsi à chaque étape tester nos résultats par rapport à ceux déjà obtenu par Damon

. Cacta, /. Pif, and . Pong, Mariner? L'objectif étant de développer des outils bioinformatiques pour conduire des analyses exhaustives de génomiques comparatives, ce qui nous permettra de déterminer le répertoire complet des gènes qui sont potentiellement dérivés d'éléments de classe II dans les différentes espèces d'Oryza. Approche expérimentale : Tout d'abord, je vais rechercher tous les gènes liés aux transposases provenant des MULEs dans le génome de Nipponbare. Pour cela, j'utiliserai tblastn et PsiBlast en parallèle. Je réaliserai la caractérisation des signatures structurales de ces séquences (conservation des domaines des transposases, présence des TIRs?) puis une classification phylogénétique avec les gènes identifiés et les transposases pour remettre les événements de domestication dans leur contexte. Lors de ces analyses, Puis, lorsque notre approche sera validée sur ces éléments, nous pourrons élargir notre recherche aux autres éléments de classe II

, Je rechercherai les relations de synténie dans les différents génomes d'Oryza et sorghum, et je déclarerai une synténie conservée si au moins un des gènes flanquants est conservé. Quand j'aurai identifié de nouveaux candidats, Damon m'aidera à les vérifier en utilisant GeVo, un outil très puissant permettant d'identifier rapidement des d'erreurs (comme les faux positifs), Ensuite les deux gènes flanquants (le plus proches du coté 5' et 3'

, Les signatures de sélection seront ensuite étudiée avec le ratio de substitution non synonyme par substitutions synonymes (Ka/Ks). Cela permettra de voir, par exemple, s'il existe une sélection positive sur les domaines de fixation à l

, Oryza et sorghum, je pourrai les analyser pour les candidats retenus. La transcription étant une caractéristique importante des ETs domestiqués car requise dans les fonctions cellulaires de l'hôte, en regardant l'activité transcriptionnelle et en combinant avec les différentes approches, De plus, comme nous possédons les données RNAseq des différents génomes d

, Il serait aussi intéressant de pouvoir combiner des analyses de méthylomes et de petits

, De plus, j'analyserai des mutants de ces gènes afin de voir si je peux mettre en évidence des phénotypes particuliers. Ainsi, nous pourrons observer l'ensemble des mécanismes génétiques et épigénétiques intervenant dans la domestication des ETs et peut être identifier des gènes domestiqués qui seraient à l, ARNs pour obtenir une vue globale de ces éléments domestiqués. Je pourrai aussi étudier les séquences cisrégulatrices présentes dans les promoteurs de ces gènes

. Arkhipova, 15 et 50 millions d'années de divergence avec O. sativa, respectivement. Avec cette échelle de temps, nous pourrons détecter des événements de domestication très récents. 2ème partie : J'appliquerai ensuite ce protocole aux éléments de classe I. En effet, quelques exemples de domestication concernant les différentes protéines des éléments de classe I ont été mis en évidence : l'intégrase chez les mammifères (Lloréns and Marín, 2001), la reverse transcriptase chez la drosophile, qui serait à l'origine des télomérases, Ces différentes étapes seront réalisées sur les espèces suivantes, représentant une divergence allant jusqu'à 50 millions d'années : Oryza glaberrima, O. meridionalis, O. punctata, O. brachyantha et sorghum avec 0.5, 2.5, vol.7, 2003.

, J'analyserai donc ces différents candidats dans le genre Oryza, en utilisant la même approche

I. A. Anca, J. Fromentin, Q. T. Bui, C. Mhiri, M. A. Grandbastien et al., , 2014.

, Different tobacco retrotransposons are specifically modulated by the elicitor cryptogein and reactive oxygen species, J. Plant Physiol, vol.171, pp.1533-1540

I. R. Arkhipova, K. I. Pyatkov, M. Meselson, and M. B. Evgen'ev, Retroelements containing introns in diverse invertebrate taxa, Nat. Genet, vol.33, pp.123-124, 2003.

J. A. Banks, P. Masson, and N. Fedoroff, Molecular mechanisms in the developmental regulation of the maize Suppressormutator transposable element, Genes Dev, vol.2, pp.1364-1380, 1988.

T. Beguiristain, M. A. Grandbastien, P. Puigdomènech, and J. M. Casacuberta, Three Tnt1 subfamilies show different stressassociated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants, Plant Physiol, vol.127, pp.212-221, 2001.

J. L. Bennetzen, J. Ma, and K. M. Devos, Mechanisms of recent genome size variation in flowering plants, Ann. Bot, vol.95, pp.127-132, 2005.

C. Biémont and C. Vieira, Genetics: junk DNA as an evolutionary force, Nature, vol.443, pp.521-524, 2006.

H. Biessmann, J. M. Mason, K. Ferry, M. Hulst, K. Valgeirsdottir et al., Addition of telomereassociated HeT DNA sequences "heals" broken chromosome ends in Drosophila, Cell, vol.61, pp.663-673, 1990.

P. M. Bingham, M. G. Kidwell, and G. M. Rubin, The molecular basis of PM hybrid dysgenesis: the role of the P element, a Pstrainspecific transposon family, Cell, vol.29, pp.995-1004, 1982.

M. E. Blewitt, N. K. Vickaryous, A. Paldi, H. Koseki, and E. Whitelaw, Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice, PLoS Genet, vol.2, p.49, 2006.

J. Brandt, S. Schrauth, A. M. Veith, A. Froschauer, T. Haneke et al., Transposable elements as a source of genetic innovation: expression and evolution of a family of retrotransposonderived neogenes in mammals, Gene, vol.345, pp.101-111, 2005.

E. Bucher, J. Reinders, and M. Mirouze, Epigenetic control of transposon transcription and mobility in Arabidopsis, Curr. Opin. Plant Biol, vol.15, pp.503-510, 2012.

Q. T. Bui and M. A. Grandbastien, LTR retrotransposons as controlling elements of genome response to stress ?, Plant Transposable Elements : impact on Genome Structure and Function, vol.24, p.273296, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01204164

P. Bundock and P. Hooykaas, An Arabidopsis hATlike transposase is essential for plant development, Nature, vol.436, pp.282-284, 2005.

E. Butelli, C. Licciardello, Y. Zhang, J. Liu, S. Mackay et al., Retrotransposons control fruitspecific, colddependent accumulation of anthocyanins in blood oranges, Plant Cell, vol.24, pp.1242-1255, 2012.

C. Calvayrac, F. Martinlaurent, A. Faveaux, N. Picault, O. Panaud et al., Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil, Pest Manag. Sci, vol.68, pp.340-347, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01137037

P. Capy, Classification and nomenclature of retrotransposable elements, Cytogenet. Genome Res, vol.110, pp.457-461, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00112422

L. Carbone, R. A. Harris, A. R. Mootnick, A. Milosavljevic, D. I. Martin et al., Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons, Genome Biol. Evol, vol.4, pp.648-658, 2012.

C. Casola, A. M. Lawing, E. Betrán, and C. Feschotte, PIFlike transposons are common in drosophila and have been repeatedly domesticated to generate new host genes, Mol. Biol. Evol, vol.24, pp.1872-1888, 2007.

S. W. Chan, D. Zilberman, Z. Xie, L. K. Johansen, J. C. Carrington et al., RNA silencing genes control de novo DNA methylation, Science, vol.303, p.1336, 2004.

C. Chaparro, R. Guyot, A. Zuccolo, B. Piégu, and O. Panaud, RetrOryza: a database of the rice LTRretrotransposons, Nucleic Acids Res, vol.35, pp.66-70, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164403

P. S. Chomet, S. Wessler, and S. L. Dellaporta, Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification, EMBO J, vol.6, pp.295-302, 1987.

S. Chopra, V. Brendel, J. Zhang, J. D. Axtell, and T. Peterson, Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.15330-15335, 1999.

R. Cordaux and M. A. Batzer, The impact of retrotransposons on human genome evolution, Nat. Rev. Genet, vol.10, pp.691-703, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419189

N. L. Craig, R. Craigie, M. Gellert, and A. M. Lambowitz, Mobile DNA II, 2002.

S. B. Daniels, A. Chovnick, and I. A. Boussy, Distribution of hobo transposable elements in the genus Drosophila, Mol. Biol. Evol, vol.7, pp.589-606, 1990.

K. M. Devos, Grass genome organization and evolution, Curr. Opin. Plant Biol, vol.13, pp.139-145, 2010.

B. Drogue, H. Sanguin, A. Chamam, M. Mozar, C. Llauro et al., Plant root transcriptome profiling reveals a strain dependent response during Azospirillumrice cooperation, Front. Plant Sci, vol.5, p.607, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01217821

K. Duan, X. Ding, Q. Zhang, H. Zhu, A. Pan et al., AtCopeg1, the unique gene originated from AtCopia95 retrotransposon family, is sensitive to external hormones and abiotic stresses, Plant Cell Rep, vol.27, pp.1065-1073, 2008.

M. L. Ebbs and J. Bender, Locusspecific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase, Plant Cell, vol.18, pp.1166-1176, 2006.

H. Ebina and H. L. Levin, Stress management: how cells take control of their transposons, Mol. Cell, vol.27, pp.180-181, 2007.

M. El-baidouri and O. Panaud, Comparative Genomic Paleontology across Plant Kingdom Reveals the Dynamics of TEDriven Genome Evolution, Genome Biol. Evol, vol.5, pp.954-965, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01218174

M. El-baidouri, M. C. Carpentier, R. Cooke, D. Gao, E. Lasserre et al., Widespread and frequent horizontal transfers of transposable elements in plants, Genome Res, vol.24, pp.831-838, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01218140

M. C. Estep, J. D. Debarry, and J. L. Bennetzen, The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution, Heredity, vol.110, pp.194-204, 2013.

B. De-felice, R. R. Wilson, C. Argenziano, I. Kafantaris, and C. Conicella, A transcriptionally active copialike retroelement in Citrus limon, Cell. Mol. Biol. Lett, vol.14, pp.289-304, 2009.

C. Feschotte, Transposable elements and the evolution of regulatory networks, Nat. Rev. Genet, vol.9, pp.397-405, 2008.

C. Feschotte and E. J. Pritham, DNA transposons and the evolution of eukaryotic genomes, Annu. Rev. Genet, vol.41, pp.331-368, 2007.

T. Finatto, A. C. De-oliveira, C. Chaparro, L. C. Da-maia, D. R. Farias et al., Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice, vol.8, p.13, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162622

D. J. Finnegan, Eukaryotic transposable elements and genome evolution, Trends Genet. TIG, vol.5, pp.103-107, 1989.

F. Gaudet, W. M. Rideout, A. Meissner, J. Dausman, H. Leonhardt et al., , 2004.

, Dnmt1 expression in pre and postimplantation embryogenesis and the maintenance of IAP silencing, Mol. Cell. Biol, vol.24, pp.1640-1648

M. A. Grandbastien, LTR retrotransposons, handy hitchhikers of plant regulation and stress response, Biochim. Biophys. Acta, vol.1849, pp.403-416, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204102

M. A. Grandbastien, A. Spielmann, C. , and M. , Tnt1, a mobile retrovirallike transposable element of tobacco isolated by plant cell genetics, Nature, vol.337, pp.376-380, 1989.

M. A. Grandbastien, C. Audeon, E. Bonnivard, J. M. Casacuberta, B. Chalhoub et al., Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae, Cytogenet. Genome Res, vol.110, pp.229-241, 2005.

M. A. Grandbastien, Activation of plant retrotransposons under stress conditions, Trends Plant Sci, vol.3, p.181187, 1998.

J. R. Haag and C. S. Pikaard, Multisubunit RNA polymerases IV and V: purveyors of non coding RNA for plant gene silencing, Nat. Rev. Mol. Cell Biol, vol.12, pp.483-492, 2011.

J. S. Hawkins, H. Kim, J. D. Nason, R. A. Wing, W. et al., Differential lineage specific amplification of transposable elements is responsible for genome size variation in Gossypium, Genome Res, vol.16, pp.1252-1261, 2006.

E. Hénaff, C. Vives, B. Desvoyes, A. Chaurasia, J. Payet et al., Extensive amplification of the E2F transcription factor binding sites by transposons during evolution of Brassica species, Plant J. Cell Mol. Biol, vol.77, pp.852-862, 2014.

H. Hirochika, K. Sugimoto, Y. Otsuki, H. Tsugawa, and M. Kanda, Retrotransposons of rice involved in mutations induced by tissue culture, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.7783-7788, 1996.

C. R. Huang, K. H. Burns, and J. D. Boeke, Active transposition in genomes, Annu. Rev. Genet, vol.46, pp.651-675, 2012.

M. E. Hudson, D. R. Lisch, and P. H. Quail, The FHY3 and FAR1 genes encode transposaserelated proteins involved in regulation of gene expression by the phytochrome A signaling pathway, Plant J. Cell Mol. Biol, vol.34, pp.453-471, 2003.

Y. Ishimaru, M. Suzuki, T. Tsukamoto, K. Suzuki, M. Nakazono et al., Rice plants take up iron as an Fe3+ phytosiderophore and as Fe2+, Plant J. Cell Mol. Biol, vol.45, pp.335-346, 2006.

H. Ito, H. Gaubert, E. Bucher, M. Mirouze, I. Vaillant et al., An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress, Nature, vol.472, pp.115-119, 2011.

S. Ivashuta, M. Naumkina, M. Gau, K. Uchiyama, S. Isobe et al.,

, Genotypedependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa), Plant J. Cell Mol. Biol, vol.31, pp.615-627

Y. Jacob, S. Feng, C. A. Leblanc, Y. V. Bernatavichute, H. Stroud et al., ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing, Nat. Struct. Mol. Biol, vol.16, pp.763-768, 2009.

P. É. Jacques, J. Jeyakani, and G. Bourque, The majority of primatespecific regulatory sequences are derived from transposable elements, PLoS Genet, vol.9, 2013.

N. Jiang, Z. Bao, X. Zhang, H. Hirochika, S. R. Eddy et al., An active DNA transposon family in rice, Nature, vol.421, pp.163-167, 2003.

J. M. Jones and M. Gellert, The taming of a transposon: V(D)J recombination and the immune system, Immunol. Rev, vol.200, pp.233-248, 2004.

R. Kalendar, J. Tanskanen, S. Immonen, E. Nevo, and A. H. Schulman, Genome evolution of wild barley (Hordeum spontaneum) by BARE1 retrotransposon dynamics in response to sharp microclimatic divergence, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.6603-6607, 2000.

V. V. Kapitonov and J. Jurka, Rollingcircle transposons in eukaryotes, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.8714-8719, 2001.

M. G. Kidwell, J. F. Kidwell, and J. A. Sved, Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: A Syndrome of Aberrant Traits Including Mutation, Sterility and Male Recombination, Genetics, vol.86, pp.813-833, 1977.

H. Kim, B. Hurwitz, Y. Yu, K. Collura, N. Gill et al., Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza, Genome Biol, vol.9, p.45, 2008.

Y. Kimura, Y. Tosa, S. Shimada, R. Sogo, M. Kusaba et al., OARE1, a Ty1copia retrotransposon in oat activated by abiotic and biotic stresses, Plant Cell Physiol, vol.42, pp.1345-1354, 2001.

S. Kobayashi, N. Gotoyamamoto, and H. Hirochika, Retrotransposoninduced mutations in grape skin color, Science, vol.304, p.982, 2004.

M. Komatsu, K. Shimamoto, and J. Kyozuka, Twostep regulation and continuous retrotransposition of the rice LINEtype retrotransposon Karma, Plant Cell, vol.15, pp.1934-1944, 2003.

J. O. Korbel, A. E. Urban, F. Grubert, J. Du, T. E. Royce et al., Systematic prediction and validation of breakpoints associated with copynumber variants in the human genome, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.10110-10115, 2007.

A. Kumar and J. L. Bennetzen, Plant retrotransposons, Annu. Rev. Genet, vol.33, pp.479-532, 1999.

E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody et al., Initial sequencing and analysis of the human genome, Nature, vol.409, pp.860-921, 2001.

P. Larmande, C. Gay, M. Lorieux, C. Périn, M. Bouniol et al., Oryza Tag Line, a phenotypic mutant database for the Genoplante rice insertion line library, Nucleic Acids Res, vol.36, pp.1022-1027, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00464031

P. Lesage and A. L. Todeschini, Happy together: the life and times of Ty retrotransposons and their hosts, Cytogenet. Genome Res, vol.110, pp.70-90, 2005.

R. Lin, L. Ding, C. Casola, D. R. Ripoll, C. Feschotte et al., Transposase derived transcription factors regulate light signaling in Arabidopsis, Science, vol.318, pp.1302-1305, 2007.

Z. Lippman, B. May, C. Yordan, T. Singer, and R. Martienssen, Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification, PLoS Biol, vol.1, p.67, 2003.

D. Lisch, How important are transposons for plant evolution?, Nat. Rev. Genet, vol.14, pp.49-61, 2013.

D. Lisch and R. K. Slotkin, Strategies for silencing and escape: the ancient struggle between transposable elements and their hosts, Int. Rev. Cell Mol. Biol, vol.292, pp.119-152, 2011.

Z. L. Liu, F. P. Han, M. Tan, X. H. Shan, Y. Z. Dong et al., Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions, TAG Theor. Appl. Genet. Theor. Angew. Genet, vol.109, pp.200-209, 2004.

C. Lloréns and I. Marín, A mammalian gene evolved from the integrase domain of an LTR retrotransposon, Mol. Biol. Evol, vol.18, pp.1597-1600, 2001.

V. J. Lynch, R. D. Leclerc, G. May, and G. P. Wagner, Transposonmediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals, Nat. Genet, vol.43, pp.1154-1159, 2011.

A. Martin, C. Troadec, A. Boualem, M. Rajab, R. Fernandez et al., A transposoninduced epigenetic change leads to sex determination in melon, Nature, vol.461, pp.1135-1138, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01203855

M. A. Matzke and R. A. Mosher, RNAdirected DNA methylation: an epigenetic pathway of increasing complexity, Nat. Rev. Genet, vol.15, pp.394-408, 2014.

B. Mcclintock, The origin and behavior of mutable loci in maize, Proc. Natl. Acad. Sci. U. S. A, vol.36, pp.344-355, 1950.

B. Mcclintock, Chromosome organization and genic expression, Cold Spring Harb. Symp. Quant. Biol, vol.16, pp.13-47, 1951.

B. Mcclintock, The significance of responses of the genome to challenge, Science, vol.226, pp.792-801, 1984.

P. Medstrand, J. R. Landry, and D. L. Mager, Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein CI genes in humans, J. Biol. Chem, vol.276, pp.1896-1903, 2001.

C. Mhiri, J. B. Morel, S. Vernhettes, J. M. Casacuberta, H. Lucas et al., The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress, Plant Mol. Biol, vol.33, pp.257-266, 1997.

S. Mi, X. Lee, X. Li, G. M. Veldman, H. Finnerty et al., Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis, Nature, vol.403, pp.785-789, 2000.

W. J. Miller, S. Hagemann, E. Reiter, and W. Pinsker, Pelement homologous sequences are tandemly repeated in the genome of Drosophila guanche, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.4018-4022, 1992.

G. Mitchell, D. W. Bartlett, T. E. Fraser, T. R. Hawkes, D. C. Holt et al., Mesotrione: a new selective herbicide for use in maize, Pest Manag. Sci, vol.57, pp.120-128, 2001.

A. Miura, S. Yonebayashi, K. Watanabe, T. Toyama, H. Shimada et al., , 2001.

, Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis, Nature, vol.411, pp.212-214

A. Miyao, Y. Iwasaki, H. Kitano, J. I. Itoh, M. Maekawa et al.,

H. Hirochika, A largescale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes, Plant Mol. Biol, vol.63, pp.625-635, 2007.

S. Moon, K. H. Jung, D. E. Lee, W. Z. Jiang, H. J. Koh et al., Identification of active transposon dTok, a member of the hAT family, in rice, Plant Cell Physiol, vol.47, pp.1473-1483, 2006.

G. J. Muehlbauer, B. S. Bhau, N. H. Syed, S. Heinen, S. Cho et al., A hAT superfamily transposase recruited by the cereal grass genome, Mol. Genet. Genomics MGG, vol.275, pp.553-563, 2006.

P. Neumann, H. Yan, and J. Jiang, The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference, Genetics, vol.176, pp.749-761, 2007.

F. Ngezahayo, C. Xu, H. Wang, L. Jiang, J. Pang et al., Tissue cultureinduced transpositional activity of mPing is correlated with cytosine methylation in rice, BMC Plant Biol, vol.9, p.91, 2009.

N. Picault, C. Chaparro, B. Piegu, W. Stenger, D. Formey et al., Identification of an active LTR retrotransposon in rice, Plant J. Cell Mol. Biol, vol.58, pp.754-765, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00685656

T. Tanaka, B. A. Antonio, S. Kikuchi, T. Matsumoto, Y. Nagamura et al., The Rice Annotation Project Database (RAP DB): 2008 update, Rice Annotation Project, vol.36, pp.1028-1033, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00300215

M. Rigal and O. Mathieu, A "millefeuille" of silencing: Epigenetic control of transposable elements, Biochim. Biophys. Acta BBA Gene Regul. Mech, vol.1809, pp.452-458, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01917175

M. Rocheta, L. Carvalho, W. Viegas, and L. Moraiscecílio, Corky, a gypsylike retrotransposon is differentially transcribed in Quercus suber tissues, BMC Res. Notes, vol.5, p.432, 2012.

F. Roudier, F. K. Teixeira, and V. Colot, Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more, Trends Genet. TIG, vol.25, pp.511-517, 2009.

F. Sabot and A. H. Schulman, Parasitism and the retrotransposon life cycle in plants: a hitchhiker's guide to the genome, Heredity, vol.97, pp.381-388, 2006.

P. S. Schnable, D. Ware, R. S. Fulton, J. C. Stein, F. Wei et al., The B73 maize genome: complexity, diversity, and dynamics, Science, vol.326, pp.1112-1115, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00751527

J. Shapiro, L. Machattie, L. Eron, G. Ihler, K. Ippen et al., Isolation of pure lac operon DNA, Nature, vol.224, pp.768-774, 1969.

T. Singer, C. Yordan, and R. A. Martienssen, Robertson's Mutator transposons in A. thaliana are regulated by the chromatinremodeling gene Decrease in DNA Methylation (DDM1), 2001.

, Genes Dev, vol.15, pp.591-602

L. Sinzelle, Z. Izsvák, and Z. Ivics, Molecular domestication of transposable elements: from detrimental parasites to useful host genes, Cell. Mol. Life Sci. CMLS, vol.66, pp.1073-1093, 2009.

R. K. Slotkin and R. Martienssen, Transposable elements and the epigenetic regulation of the genome, Nat. Rev. Genet, vol.8, pp.272-285, 2007.

R. K. Slotkin, M. Vaughn, F. Borges, M. Tanurdzi?, J. D. Becker et al., Epigenetic reprogramming and small RNA silencing of transposable elements in pollen, Cell, vol.136, pp.461-472, 2009.

C. Stewart, D. Kural, M. P. Strömberg, J. A. Walker, M. K. Konkel et al., A comprehensive map of mobile element insertion polymorphisms in humans, PLoS Genet, vol.7, p.1002236, 2011.

K. Sugimoto, S. Takeda, and H. Hirochika, MYBrelated transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Tto1 and defense related genes, Plant Cell, vol.12, pp.2511-2528, 2000.

S. Takeda, K. Sugimoto, H. Otsuki, and H. Hirochika, A 13bp cisregulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors, Plant J. Cell Mol. Biol, vol.18, pp.383-393, 1999.

F. K. Teixeira and V. Colot, Gene body DNA methylation in plants: a means to an end or an end to a means?, EMBO J, vol.28, pp.997-998, 2009.

K. Tsugane, M. Maekawa, K. Takagi, H. Takahara, Q. Qian et al., An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice, Plant J. Cell Mol. Biol, vol.45, pp.46-57, 2006.

M. C. Ungerer, S. C. Strakosh, and Y. Zhen, Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation, Curr. Biol. CB, vol.16, pp.872-873, 2006.

H. Vaucheret and M. Fagard, Transcriptional gene silencing in plants: targets, inducers and regulators, Trends Genet. TIG, vol.17, pp.29-35, 2001.

A. Villasante, J. P. Abad, R. Planelló, M. Méndezlago, S. E. Celniker et al., , 2007.

, Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase, Genome Res, vol.17, pp.1909-1918

C. Vitte and O. Panaud, LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model, Cytogenet. Genome Res, vol.110, pp.91-107, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00168793

O. Voinnet, RNA silencing as a plant immune system against viruses, Trends Genet. TIG, vol.17, pp.449-459, 2001.

J. N. Volff, Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes, BioEssays News Rev. Mol. Cell. Dev. Biol, vol.28, pp.913-922, 2006.

T. Wicker, F. Sabot, A. Huavan, J. L. Bennetzen, P. Capy et al., A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet, vol.8, pp.973-982, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169819

H. Xiao, N. Jiang, E. Schaffner, E. J. Stockinger, and E. Van-der-knaap, A retrotransposonmediated gene duplication underlies morphological variation of tomato fruit, Science, vol.319, pp.1527-1530, 2008.

M. N. Yassi, C. Ritzenthaler, C. Brugidou, C. Fauquet, and R. N. Beachy, Nucleotide sequence and genome characterization of rice yellow mottle virus RNA, J. Gen. Virol, vol.75, pp.249-257, 1994.

F. Zedek, J. Smerda, P. Smarda, and P. Bure?, Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis, BMC Plant Biol, vol.10, p.265, 2010.

J. Zhang, C. Yu, V. Pulletikurti, J. Lamb, T. Danilova et al., Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize, Genes Dev, vol.23, pp.755-765, 2009.

L. Zhou, R. Mitra, P. W. Atkinson, A. B. Hickman, F. Dyda et al., Transposition of hAT elements links transposable elements and V(D)J recombination, Nature, vol.432, pp.995-1001, 2004.