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Abstract

The morphology, physiology, and behavior of marine organisms have been a valuable source of inspiration for solving conceptual and
design problems. Here, we introduce this rich and rapidly expanding field of marine biomimetics, and identify it as a poorly articulated
and often overlooked element of the ocean economy associated with substantial monetary benefits. We showcase innovations across
seven broad categories of marine biomimetic design (adhesion, antifouling, armor, buoyancy, movement, sensory, stealth), and use
this framing as context for a closer consideration of the increasingly frequent focus on deep-sea life as an inspiration for biomimetic
design. We contend that marine biomimetics is not only a “forgotten” sector of the ocean economy, but has the potential to drive ap-
preciation of nonmonetary values, conservation, and stewardship, making it well-aligned with notions of a sustainable blue economy.
We note, however, that the highest ambitions for a blue economy are that it not only drives sustainability, but also greater equity and
inclusivity, and conclude by articulating challenges and considerations for bringing marine biomimetics onto this trajectory.

Introduction
Nature has been a source of inspiration for humanity through-
out history (1, 2). Its influence is evident in the first tools and
cave paintings, is reflected in histories, mythologies, and legends,
and remains omnipresent today, inspiring everything from the
design of airplanes and robots to computer algorithms, pack-
aging, and corporate management structures (3–7). This is the
world of biomimicry and biomimetic approaches, which seek to
solve conceptual and design problems by mimicking or emulat-
ing the structure or performance of organisms and ecosystems
that shape the natural world (8–10).

The starting point for biomimetics is the observation of the nat-
ural world. Yet the planet’s largest habitat—the ocean—has been
mostly inaccessible for virtually the entirety of human history.
For 3.7 billion years, life has existed in the ocean (three times as
long as on land), and the tremendous variety of habitats in the
ocean has resulted in comparably diverse morphologies, physi-
ologies, and behavioral mechanisms (8, 11). While it covers 71%
of the Earth’s surface, the vast majority of the ocean remains in-
frequently visited (12) and largely unseen. Deep-sea habitats in
particular are among the least known on Earth (13). The deepest

point in the ocean, the Challenger Deep in the Mariana Trench,
was visited for the first time by humans in 1960—for a total of 20
min—and was not visited again for over 50 y (12, 14, 15).

Ocean exploration in recent decades has resulted in the dis-
covery of deep-sea ecosystems where species have adapted to
thrive under extremes of salinity, pressure, light, and temperature,
including hydrothermal vents (1979) and brine pools (1983) (16–
19). The potential for future discovery is vast: half of the ocean
reaches depths of 4,000 m or more, only 20% of the seabed has
been mapped (20), and 70% to 90% of marine species remain un-
described (19, 21). Real-time feeds from unmanned deep-sea sub-
mersibles outfitted with the latest camera equipment are now
freely available (22–24), with thousands of people around the
world sharing the experience of seeing unmapped parts of the
seafloor and seamounts and unknown species for the first time.
Museums around the world are filled with specimens and collec-
tions of deep-sea life (25), and thousands of genetic sequences
(26), and even complete genomes (27–29), of deep-sea organisms
are freely accessible in online databases (30, 31).

Recent advances in ocean science and exploration have
occurred alongside a dramatic expansion in the scope and
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diversity of ocean-based activities and industries (32). Today’s
ocean economy encompasses multiple industries that add up to
over USD 1.9 trillion revenues annually (33), including industries
as diverse as aquaculture, fisheries, oil and gas, offshore wind,
cruise tourism, and marine biotechnology (34). As the ocean econ-
omy has grown, so too has attention to issues of equity and inclu-
sivity, as just 100 companies—mostly headquartered in the Global
North—accounted for nearly 60% of the ocean economy in 2018
(33, 35). In line with the UN Sustainable Development Goals and
Agenda 2030, a variety of aspirational narratives have emerged of
the ocean as a source of development that is not only sustain-
able but also equitable and inclusive. This type of ocean econ-
omy has been described by some as a “blue economy,” a term that
has become widely used in recent years, but which remains with-
out a broadly agreed definition (35, 36–40) (See note on p. 10). A
complementary narrative of “exploration before exploitation” (41)
underscores the loss that could accrue from embracing emerging
extractive industries in the ocean, such as mining the seabed for
metals and minerals, especially in the deep sea where recovery
from impacts is extremely slow or impossible (42–44).

If mining and hydrocarbon extraction represent one approach
to ocean resources, marine biomimetics represents a starkly dif-
ferent paradigm of resource use: innovation driven by exploration
and understanding of the natural world and the life and processes
that shape it. Yet in assessments of ocean uses and the blue econ-
omy, biomimetics is frequently excluded (33, 34, 45–48), or lumped
together as a vaguely defined “emerging industry” (49, 50). We con-
tend that marine biomimetics is a unique element of the ocean
economy: vastly diverse and with key benefits for the viability of
multiple industries; well-established rather than emerging; and
worthy of greater attention in the context of aspirational narra-
tives of a sustainable, inclusive, and equitable blue economy. The
diversity of marine species that have spurred innovation also un-
derscores the value of effective ocean conservation, as marine
systems grow increasingly stressed by a changing climate and
other anthropogenic pressures.

In the following, we first present a review of key focal areas
for biomimetic design based on marine life, which then provides
context for a closer look at the growing list of instances in which
deep-sea life has inspired innovative design and technologies. We
conclude by noting benefits that could arise from a more system-
atic articulation of marine biomimetics in the context of efforts
to transform today’s ocean economy into a sustainable, inclusive,
and equitable blue economy.

Biomimetic design inspired by marine life
The study of marine life has yielded insights into a range of spe-
cialized adaptations that allow species to thrive in a diverse range
of environmental conditions, and which have been a source of in-
spiration (8, 51). Categorizing the diversity of ways in which this
inspiration translates into applications remains complex, with a
wealth of associated terminology (Table 1), and often multiple
nonexclusive terms used to describe a single innovation using a
variety of available typologies (51–55) (e.g. by function, process, ar-
chitecture, or material). For instance, the tubercles on humpback
whale flippers (see the “Movement” section) have inspired the de-
velopment of wind turbine blades, which are simultaneously “bio-
inspired” (i.e. they are inspired by the structure of a natural mate-
rial), “biomorphic” (i.e. they resemble the shape of a living thing),
“biomimetic” (i.e. they mimic the structure of the flipper), and are
also an example of “biomimicry” (i.e. they did not directly inspire
the wind turbine, but rather a more sustainable and optimized
design of the blades) (8, 56, 57).

In this Review, we follow the spirit of Otto Schmitt, who is cred-
ited with coining the term “biomimetics” in the 1950s and argued
that biomimetics was simply the “transfer of ideas and analogues
from biology to technology” (2, 61). A similar instinct for simplifi-
cation was articulated by Vincent and co-authors, who suggested
that biomimetics could be used synonymously with ‘“biomime-
sis,” “biomimicry,” “bionics,” “biognosis,” “biologically inspired de-
sign,” and similar words and phrases implying copying or adapta-
tion or derivation from biology’ (2). While recognizing the poten-
tial for further disambiguation, we opt for this broader framing
of biomimetics, and introduce seven broad groupings of marine
biomimetic applications (Fig. 1).

Adhesion
The survival of many marine organisms depends on their capacity
to adhere to underwater surfaces. The biomineralized adhesives
produced by barnacles and oysters as well as the adhesive “byssus
threads” used by mussels allow for permanent adhesion, while
viscous adhesive proteins secreted by echinoderms like sea stars,
sea cucumbers, and sea urchins allow for temporary adhesion, lo-
comotion, and handling of food (10, 86–90). The bioadhesive glue
of limpets are up to 97% water, yet are comparable in strength to
the cements of oysters and barnacles, and the diversity of marine
invertebrate and diatom species that produce bioadhesive gels
represent a vast research frontier (86, 88, 91, 92). The biomimetic
potential associated with understanding the structure and chem-
istry of marine bioadhesives has applications across diverse med-
ical fields focused on bone repair (10, 93), dentistry (94, 95), tissue
engineering (96), and as surgical sealants (97–99), as well as in the
construction of vessels and facilities in the marine environment,
particularly when these require coatings and paints that need to
adhere to water-facing surfaces (100–104). Similarly, proteins in
the byssus threads that mussels use to attach to surfaces have
inspired the development of adhesives, which are infused with
cerium-oxide nanoparticles (105) to provide anticorrosion prop-
erties when applied to metal surfaces (106, 107).

Antifouling
Wherever solid surfaces are found in the ocean, marine organ-
isms begin to adhere to them, using the whole suite of chemical
and structural adhesive capacities described in the previous
section. This is a process called biofouling, namely the unwanted
accumulation of such organisms to everything from submarine
hulls to the cooling water intake pipes at nuclear power plants,
and the implications for marine industries are severe. Biofouled
ships, for instance, consume more fuel due to greater weight
and increased friction, and potentially transfer invasive species
across oceans (108, 109). The economic losses associated with
marine biofouling currently cost marine industries over USD
150 billion annually (108, 110, 111), with estimates of the global
market for marine coatings predicted to top USD 15 billion by
2024 (108). Conventional biocides and antifouling paints used for
antifouling carry a heavy environmental impact, including bioac-
cumulation of organotins and copper in marine mammals and
other marine life (112, 113). Biomimetic approaches to address
these issues have focused in particular on the natural coatings
and compounds produced by marine organisms (108, 114, 115),
including ascidians (116), macroalgae, (117) algal compounds
(118), marine bacteria (119, 120), and sponges, presumably in an
effort to avoid biofouling themselves (121). Another rich source
of inspiration has been the development of biomimetic surfaces
based on the microtopography of marine organisms that function
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Table 1. Key concepts associated with nature-inspired activities

Concept Description Sustainability Examples [inspired by] Reference

Biomimicry Learning from and then emulating nature’s forms,
processes, and ecosystems to create more
sustainable designs

Main focus Shinkansen 500 series bullet trains
in Japan [kingfisher] (58),
ventilation in Eastgate Centre,
Harare [termite nest] (59)

Janine
Benyus,
1997 (60)

Biomimetics The process of mimicking the formation, structure
or function of a biologically produced substance
or material to produce or synthesize an artificial
product. Derived from the Greek words bios (life)
and mimesis (to imitate), biomimetics was
coined by inventor Otto Schmitt (61, 62).

Frequently Velcro [burdock] (63), gecko tape
[gecko] (64), sharkskin swimsuit
[sharks] (65)

Otto
Schmitt,
1969 (62)

Bionic The creation of modern engineering systems or a
set of functions, based on biological systems
and methods found in nature (or using artificial
materials and methods to produce movement in
a person or animal)

Rarely Self-healing concrete [multiple
organisms] (66, 67), implants in
humans [axolotl] (68)

Jack Steele,
1960 (69)

Biophilia/biophilic design Human tendency to interact or be closely
associated with other forms of life in nature: a
desire or tendency to commune with nature;
biophilic design is an extension of biophilia

Important Green or living walls inside offices;
natural patterns, like curves and
fractals, used in interior design
[forests, meadows, waterfalls]

E.O.
Wilson,
1986 (70)

Biomechanics Study of the mechanical physics of biological
processes or structures

Occasionally Studying the aerodynamics of bird
(71) and insect (72) flight and the
hydrodynamics of swimming in
fish (73)

Giovanni
Alfonso
Borelli,
1680 (74)

Bio-utilisation The direct use of nature for ecological benefits Occasionally Gathering medicinal plants;
growing algae to make biofuels;
cultivation of Artemisia annua to
produce malaria drug artemisinin
(75)

Youyou Tu,
2011.
(75)

Bioremediation Use of microorganisms, plants, or enzymes, to
detoxify contaminants in soil or other
environments

Main focus Using bacteria to break down
oilspills (76, 77), or plants to bind,
extract, and clean up heavy metals
(78, 79)

Vidali,
2001 (80)

Biomorphic Resembling or suggesting the forms of living
organisms, often in design and art

Rarely The Sagrada Família church by
Antoni Gaudí [seashells, trees]; the
citrus press “Juicy Salif” by Philippe
Starck [squid] (81)

Geoffrey
Grigson,
1935 (82)

Bio-affiliation The idea that humans feel better and are healthier
when in contact and connected with nature

Social sustain-
ability

Therapeutic gardens for the
elderly; parks in urban areas
promoting physical activity [groves,
meadows, streams]

Roy
Remme
et al,
2021.
(83)

Bioinspired General description of several of the concepts in
this table, but also a way to emphasise that the
resulting idea or innovation is not about simply
copying nature

Context
dependent

See all above [multiple] Julian
Vincent
et al,
2006 (84)

Nature-based solutions Actions that are inspired and supported by nature,
seeking to build resilience while providing
social, environmental and economic benefits.

Main focus Tree-planting, coastal zone
restoration [forests, mangroves,
coastal dunes]

Alexandre
Chaus-
son et al,
2020 (85)

as natural antifoulants (115), including common marine shells,
(122) crustaceans (123), seaweed (124), and sharkskin (125, 126).

Armor
The scales of fish have evolved to provide multiple benefits, most
notably providing armoured protection without sacrificing flexi-
bility. The scales of fish (and snakes) were likely already inspiring
the development of armors in human antiquity, and Ehrlich notes
historical examples extending back to the time of the Persian and
Roman empires in which scale armor is referenced or depicted (86,
127). The flexibility and protective properties of scales continue
to inspire armor designs today (128, 129). The shells of mollusks
have also inspired biomimetic designs [including military armor

(130, 131)], with their nacreous layers outperforming conventional
ceramics with regard to toughness and both tensile and compres-
sive strength (132). The biomineralization process through which
shells form has been the subject of substantial research (133–135),
and multilayered ceramics and composites inspired by seashell
nacre are in development (132, 136). Mantis shrimps, a frequent
source of inspiration (also see the “Sensory” section), possess a
pair of appendages called dactyl clubs that they use to strike
prey at speeds comparable to a fired bullet with a force of up
to 153 kg (although mantis shrimps themselves only weigh 12 to
90 g) (137). The periodic helical structure of the layered fibers in
mantis shrimp dactyl clubs and lobster claws have been stud-
ied and resulted in bioinspired fiber composite laminates with
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Fig. 1. Marine biomimetics. The diverse morphological, physiological, and behavioral characteristics of marine species have inspired innovations that
extend across diverse industries. Photo credits from left to right, first row: NOAA; Christian Gloor; CC0 Public Domain; Luc Viatour; CC0 Public Domain;
Cédric Péneau; Christian Gloor. Second row: CC0 Public Domain; CC0 Public Domain; CC0 Public Domain; Jennifer Frame/JenniFish Ocean Test; CC0
Public Domain; NASA; SAMS.

increased resistance to impact force, denting, and cracking (138,
139).

Buoyancy
Neutral buoyancy can be an important asset for movement un-
derwater (140–142), and led to the evolution of swim bladders in
fish some 400 million years ago (51). These gas-filled sacs are flexi-
ble and adjustable, with fish equilibrating them to provide neutral
buoyancy at the topmost reaches of their respective habitats (51,
143). Biomimetic design based on the swim bladder can be found
during the Renaissance, with Giovanni Borelli publishing drawings
of what could have been the world’s first submarine in 1680 (8, 74)
(although no evidence exists that this project moved beyond con-
ceptual drawings). Borelli’s illustrated plate (Fig. 2) includes not
only biomimetic use of goatskin bags as a hydrostatic mechanism
to submerge the submarine, but also a conceptualized diver who
can move underwater using a large goatskin bag that was meant
to double as a source of air and an adjustable buoyancy device
(74). The latter innovation foreshadowed a modern-day buoyancy
compensation device, that itself mimics the fish’s swim bladder,
and enables divers to closely control their buoyancy (51). Buoy-
ancy is a ubiquitous concern for operations at sea and under-
water, and today there are a number of underwater robots, au-
tonomous gliders and submersibles that have drawn inspiration
not just from fish and their buoyancy-related movements (144),
but from marine species as diverse as whales (145, 146), dolphins
(147, 148), jellyfish (149–151), lobsters (149, 152, 153), and copepods
(154).

Movement
The movement of life below water has been perhaps the richest—
and one of the most varied—sources of inspiration for biomimetic
design. During the Renaissance, Juliana Berners (15th century)
and Leonardo da Vinci (16th century) were already remarking
on the movement of water eddies, with the latter noting how

the streamlined shape of fish could reduce drag (8, 155, 156).
The fusiform design of some fish, with rounded heads and bod-
ies that gradually taper back to the tail, inspired (unsuccessful)
biomimetic boat design efforts in the early 19th century based on
close studies of the movements of dolphins and trout, and, much
later, (successful) design of nuclear submarines (8, 157). While the
shape and movement of dolphins continue to be a source of in-
spiration (147, 158), finned fishes too have drawn intense inter-
est (159–161), as have sharks (162, 163) and rays (164, 165). The
fluid mechanics associated with rounded tubercles on the flippers
of humpback whales have inspired design both below and above
water, most notably in the shape of wind turbines, tidal turbines,
and even surfboards (56, 57, 166, 167), while the flexible waving of
macroalgae has led to the development of kelp-inspired wave en-
ergy generators (168). The body design and propulsive systems of
other marine life have inspired additional libraries of biomimetic
design, including the jet propulsion and shape of squids (51, 169–
171) and other mollusks (172), the movement of siphonophores
(173, 174), and the bell shape and contractions of jellyfish (51, 151,
169, 175–177). Applications extend from underwater vehicles all
the way to the design of robots and spaceships specially adapted
to explore other planets with starkly different atmospheric and
gravitational conditions (178). Recent advances in experimental
modeling methods have even rendered the shape and movement
of extinct marine animals such as plesiosaurs a source of rich
biomimetic inspiration for the design of underwater robotics (179–
184).

Sensory
The sensory environment under water is distinctly different from
above, with water rapidly absorbing light, and currents dispers-
ing chemical trails (51). Consequently, marine life possesses sen-
sory capacities particularly adapted to this environment. Elephant
seals, for instance, vibrate their facial whiskers to help locate and
pursue prey (185), while dolphins and some whales are able to
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Fig. 2. Panel from “On the Motion of Animals” (De Motu Animalium) by Giovanni Alfonso Borelli (1680) illustrating the properties of fish swim bladders
(upper left), and how they have inspired biomimetic design of a submarine using air-filled goatskin bags (lower right) as well as a diver’s buoyancy
device and tank of air (lower left) (74).

produce high-frequency sounds that enable them to echolocate
prey (51, 186, 187). Dolphins and humpback whales also famously
use bubble nets to gather their prey into confined spaces, and
while traditional sonar fails in environments with heavy sed-
imentation or bubbles, they still find their prey (51, 188, 189).
Biomimetic work on developing dolphin-inspired sonar and radar
is ongoing, leading to the development of sonar movement tags
for tracking animal movements (190), with vast potential implica-
tions for maritime navigation (191). Another novel sensory adap-
tation is found in sharks, which use their electrosensory system
to detect the weak electric field generated by fish. Sharks also
possess a “cerebellum chip” that identifies their own electric field
and is able to account for this when processing external electro-
magnetic signals (51). Both the system of electroreceptors and the
shark’s ability to process this data have inspired the development

of various innovations including sensors and artificial electrore-
ceptors (51, 192, 193). A final sensory adaptation of note in the ma-
rine world is optical, as exemplified perhaps most spectacularly
in the world’s 450 species of mantis shrimp. Among other things,
mantis shrimp eyes are compound, can move independently of
one another, rotate up to 70 degrees in any direction, and see 16
channels of color (humans can process three) as well as ultra-
violet and polarized light (194). Associated biomimetic work has
focused on adaptively enhancing contrast vision (195), developing
novel photodetectors (196), and enhancing satellite imagery (197).

Stealth
Marine life has evolved a diverse range of stealth adaptations,
including passive camouflage that mimics background environ-
ment, and translucency that renders species almost invisible (51).
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Some species seek to mimic the appearance of other species that
are poisonous, an approach also used in the design of banded surf-
boards and wetsuits meant to deter shark attacks by mimicking
the patterns of banded seasnakes (51, 198). The active camouflage
used by cephalopods like octopi and cuttlefish to opportunistically
mimic substrates has drawn intense interest (199) due among
other things to its rapidity, with chromatophores that can flash
different colors roughly five times every second (51). Cephalo-
pod chromatophore cells have inspired the development of ar-
tificial skin (200, 201), paint-like coatings that can be triggered
to change color (202, 203), and artificial chromatophores (204,
205).

Other applications
While the previous subsections showcase some of the broader
categories of marine biomimetics, they are pieces of a vibrant
and rapidly expanding discipline. A comprehensive list would in-
clude the many biomimetic designs based on chitin (206–209) and
collagen (210–212), design and automation based on the school-
ing behavior of fish (213, 214), architecture inspired by marine
species (215), electrochemical batteries inspired by electric rays
(51, 216), use of coral skeletons as bone tissue scaffolds (217–220),
and many other innovations. In an even broader sense, groups of
organisms and even entire ecosystems can be a source of inspira-
tion, as in the case of coral reefs serving as an inspiration for in-
dustrial symbiosis (221) or nature-based solutions (Table 1) such
as artificial reefs and coastal protection measures (222, 223).

Looking further to the periphery of marine biomimetics, two
additional categories of innovation are of interest. The first of
these, marine biodiscovery, often extends beyond biomimetics
into the world of bioutilization, with marine natural products (sec-
ondary metabolites produced by marine organisms) being col-
lected and subsequently used or modified to produce both medi-
cal and nonmedical products. Some 700 new marine natural prod-
ucts are being discovered on an annual basis, and a total of nearly
40,000 have been identified to date (224, 225). In some cases, the
proteins associated with marine natural products provide direct
inspiration for the development of novel synthetic constructs.
Iconic examples of commercial products originating from marine
biodiscovery include a suite of marine drugs (20 or which are in
clinical use today (226), while at least 33 more are in clinical tri-
als) (227–229). The rates of successful drug discovery from marine
natural products is up to four times higher than their terrestrial
counterparts, suggesting rich further potential (230, 231). Looking
beyond the specific instance of marine drugs, the study of ma-
rine life has been crucial for fundamental breakthroughs in med-
ical science and beyond, including for instance the discovery of
green fluorescent protein in the jellyfish Aequorea victoria (used for
broad range of medical and biological applications) (232, 233), and
understanding the cell cycle through experiments on sea urchins
(and subsequent discovery of cyclins and associated drugs) (234).
Collectively, 13 Nobel Prizes in chemistry and medicine have been
awarded for work on marine organisms (235).

The second category of innovations located on the periph-
ery of marine biomimetics does not look at individual organ-
isms and ecological systems, but rather the conditions that cre-
ate their environments, namely geomimetics (material design
inspired by natural geological syntheses and natural materials
formation) (236). An extreme case under this umbrella is ge-
omimetic design based on hydrothermal synthesis (i.e. methods
for crystallization under conditions of high pressure and temper-
ature), although analogue systems exist not only in the ocean

(e.g. hydrothermal vent systems, which can be found in both the
shallow and deep sea), but also hot acidic springs on land (236).
Hydrothermal synthesis has been used to generate both inorganic
materials such as zeolite and synthetic gemstones, as well as or-
ganic “green” polymers (237) and polyimide-based covalent or-
ganic frameworks, which are promising materials for use as an-
odes in lithium-ion batteries (236, 238).

The deep sea as a source of inspiration
From an anthropocentric perspective, the deep sea is a place
of extremes: the largest biome on Earth, where sunlight does
not penetrate, where pressures force us into thick-walled sub-
mersibles, and with a diversity of environments characterized by
extremes (239). But what is extreme to us is attractive to others,
with entire classes of organisms that thrive in extremes of tem-
perature (thermophiles), acidity (acidophiles/alkaliphiles), salin-
ity (halophiles), pressure (barophiles), and high metal concentra-
tions (metalophiles) (236, 240). All such conditions are present in
the deep sea, and often in combination, providing habitats for
polyextremophiles (microorganisms that benefit from environ-
ments characterized by multiple of these “extreme” conditions)
(236, 241).

Wherever we have looked for life in the deep ocean, we have
found it, with over 25,000 deep-sea species already included in the
World Register of Deep-Sea Species (WoRDSS), and likely orders
of magnitude more yet to be described (11, 19, 242). While vari-
ous depths have been suggested as the starting point of the “deep
ocean” (243), here a 500 m threshold is considered in line with the
WoRDSS database (239, 242). In contrast to the “Biomimetic design
inspired by marine life” section, which provides a brief review of
broad categories of marine biomimetics, the following subsections
focus on individual deep-sea species and species groupings that
have been a source of inspiration for diverse applications.

Deep-sea fishes
All the better to see you with: the brownsnout spookfish and
glasshead barreleye fish
No light extends beyond 1,000 m into the ocean, but some faint
traces of residual daylight persist at depths from 500 to 1,000 m,
and a range of species in this zone produce bioluminescence (244)
creating a unique sensory environment. A number of mesopelagic
teleost fishes have evolved unique eyes that benefit from both
sources of light (through a combination of reflective and refrac-
tive optics) (Fig. 3A), with the two most-studied species being the
brownsnout spookfish (Dolichopteryx longipes) and the glasshead
barreleye fish (Rhynchohyalus natalensis) (244–247). The reflective
eyes of decapods like lobsters spurred advances in the field of as-
trophysics, namely the development of “lobster-eye” X-ray tele-
scopes (248, 249), and the biomimetic design potential of fur-
ther telescope innovations focused on the unique tilting of mirror
plates in D. longipes eyes has been suggested (250, 251). A recent
study created advanced models to test the optical performance of
D. longipes, paving the way to the development of optical systems
that can function in harsh environments including the deep sea
(252). Other examples of biomimetic design are found in archi-
tecture, where the mirrored eyes of D. longipes inspired concepts
of energy-saving roof designs by making optimal use of available
daylight (253, 254), as well as in the design of a streamlined pas-
senger car based on the body line of R. natalensis (255).
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Fig. 3. Inspiration from deep-sea species. Life in the deep sea is specially adapted to thrive in areas characterized by high pressure, absence of sunlight,
and limited nutrients. Examples include (A) the mirrored eyes of mesopelagic teleost fish like the glasshead barreleye fish; (B) the transparent teeth of
the deep-sea dragonfish; (C) the morphology of the Mariana snailfish (note the CT scan revealing a small crustacean, the green shape, in the snailfish’s
stomach); (D) antifouling compounds extracted from deep-sea sponges; (E) the air-filled shell that provides buoyancy to the Ram’s horn squid; and (F)
the armored shell of the Scaly-foot snail. Photo credits: (A) and (B) MBARI; (C) Adam Summers/University of Washington; (D)
CoralFISH/Havforskningsinstituttet; (E) Schmidt Ocean Institute; (F) Chong Chen.

All the better to eat you with: the deep-sea dragonfish
While the structural properties of marine species have inspired
the development of novel ceramics and related materials, such ef-
forts have often focused on the nacreous layers of (coastal) mol-
lusk shells. In the deep sea, the dragonfish (Aristostomias scintil-
lans) initially attracted study due to its uniquely transparent teeth,
which are thought to be an adaptation enabling further stealth,
with the teeth becoming virtually invisible even in proximity to
light produced by bioluminescent species (Fig. 3B) (256). A mate-
rials science approach to understanding A. scintillans teeth found
that their transparency arises from a unique nanoscale structure,
which also contributes to levels of hardness and sharpness com-
parable to the teeth of piranhas and great white sharks (256) and
a source of inspiration for researchers looking to develop trans-
parent ceramics (257).

Moving under pressure: the Mariana snailfish
The morphology and movement of dolphins and trout have in-
spired vessel design in shallow waters. Likewise, the development
of vessels that can move in the deep sea benefits from close study
of deep-sea life. In 2017, scientists discovered a new hadal snail-
fish species (Pseudoliparis swirei) (258) in the Mariana Trench and
collected specimens at depths of over 6,000 m (29) (Fig. 3C). A close
study of its morphology in 2019 (29) contributed to the spectacu-
lar development of an untethered soft robot with multiple points
of inspiration from P. swirei, including the use of thin, flapping pec-
toral fins, and the distribution of comparatively heavier electron-
ics within the robot’s “head” similar to the distributed weight of
the snailfish’s skull (259). The soft robot was successfully field-
tested at a depth of 10,900 m in the Mariana Trench, underscor-
ing the potential of increased deep-ocean exploration through the
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development of additional soft robots that can function in condi-
tions of extreme pressure (259).

High-performance slime: the Atlantic hagfish
The Atlantic hagfish (Myxine glutinosa) is an ancient species that
is recognizable in fossils from 300 million years ago, and which
is unique in the animal kingdom as having a skull but no spinal
column (260). The hagfish’s defensive slime—which it produces in
vast quantities within fractions of a second and is characterized
by thousands of silklike protein threads (260)—has attracted cu-
riosity for hundreds of years and transcended the scientific com-
munity to enter popular culture (261–263). A search of the World
Intellectual Property Organization (WIPO) Patentscope database
(264) in July 2022 found 1,170 patents that reference the hag-
fish, with applications including use of slime threads for high-
performance fibers, safety helmets, bulletproof vests, and even
antishark sprays (261, 262, 265, 266).

Deep-sea sponges
Skeletons of the deep: deep-sea sponges
Deep-sea sponges have attracted intense interest, as they are
known to form siliceous skeletons characterized by high lev-
els of porosity that can act as natural tissue scaffolds (267–
270). A challenge of treating bone defects in humans is the need
for bone substitution materials, with the traditional sources be-
ing the patient themself (autogenous grafts), other individuals
of the same species (allograft materials), or nonhuman species
(xenografts) (271). The former is frequently not available, and the
latter two carry risk of disease transmission and host rejection,
posing a major biomedical challenge (271). Siliceous scaffolds pro-
vide an attractive source of either xenografts or biomimetic con-
structs inspired by their structure (268). A recent study found
diversity in porosity and pore size among representative deep-
sea sponge species (Geodia barretti, Geodia atlantica, Stelletta nor-
mani, Phakellia ventilabrum, and Axinella infundibuliformis), sug-
gesting varying inspirations for tissue engineering applications
(268).

High-definition flow simulations of the deep-sea sponge Eu-
plectella aspergillum have shed light on the internal architecture
of sponge skeletons and their capacity to reduce hydrodynamic
stress (272), while other simulations of its grid-like structure and
bracings resulted in biomimetic lattice geometries with implica-
tions for the design and resilience of modern infrastructure, and
minimizing the amount of material needed for construction (215,
273, 274). One of the most iconic such examples is “The Gherkin”
in London’s financial district, which due to its design is claimed
to function on half the energy of a similarly sized office building
(215). Similar structural analysis of the giant anchor spicules of
Monorhaphis chuni have found optimized designs highly resistant
to fractures and cracking, while simultaneously possessing opti-
cal properties enabling the transmissibility of visible light with po-
tential fiber-optic applications (275, 276). The porous skeletons of
deep-sea sponges have also inspired biomimetic design, with syn-
thetic porous carbon fibers found to achieve high levels of absorp-
tion of oils and organic solvents, suggesting future use in biore-
mediation (277). Likewise the stiffness and toughness of sponge
skeletons has inspired the development of novel multilayered
pipewalls (278). Patent filings associated with deep-sea sponges
include the production of a novel antifouling compound from
Geodia barretti (Fig. 3D) (279), and a composite material based on
the silicated collagen matrix of the glass rope sponge, Hyalonema
sieboldi (280).

Other deep-sea fauna
Moving rapidly between depths: the Ram’s horn squid
While squids do not have internal buoyancy mechanisms compa-
rable to the swim bladders of fish, an unusual variation is found
in the Ram’s horn squid (Spirula spirula), a deep-sea cephalopod
mollusk that practices diel vertical migration, generally remain-
ing at depths of 600 to 700 m during the day to avoid predation,
and rising at night to depths of 100 to 300 m to feed (51, 281). The
“Ram’s horn” of S. spirula comes from its capacity to manufacture
a hollow gas-filled shell that remains almost entirely within its
body, and which grows and adds chambers in an expanding spi-
ral form throughout its life (Fig. 3E) (51). While fish swim blad-
ders can equilibrate somewhat to differing depths and pressures
(143, 282), this process is slow. The much more rapid diel vertical
migration of S. spirula is mediated by its rigid shell (although the
shells implode at depths of 1,500 m, marking a clear depth limit
for the species) (51, 281). Anderson and co-authors note that the
biomimetic design of the Deepsea Challenger manned submersible,
which descended to the ocean’s deepest point (10,911 m) in 2012,
drew on both the shape and vertical orientation of S. spirula, as
well as its shell, which it mimicked with a low-density foam of
hollow microballoons (15, 51, 283).

The finest protection: the Scaly-foot snail
The scaly-foot snail (Chrysomallon squamiferum) is a gastropod mol-
lusk species that was discovered in 1999 and has since been found
on three hydrothermal vent systems at depths of over 2,400 m
(284). C. squamiferum is heavily armored, enabling it to survive the
attacks of crabs that have been known to squeeze C. squamiferum
in their claws for days (Fig. 3F) (285, 286). Similar to other mol-
lusks, C. squamiferum has a multilayered shell, but its iron-infused
outer layer is unique (derived from the mineral-rich vent fluids)
and followed by a thick organic layer and a third stiff mineralized
layer, yielding remarkable protection that has attracted the atten-
tion of the US Department of Defense, which has funded research
to explore its biomimetic potential for armor development (285,
286).

Nontoxic antifouling: Streptomyces albidoflavus strains
The bacterium S. albidoflavus is ubiquitous, with strains isolated
from sources as diverse as a golf course in Korea (287), a mangrove
leaf in China (288), soil in Poland (289), and sediments collected
at a depth of 5,100 m in the western Pacific Ocean (290). Noting
the many novel compounds that have been identified in marine
Streptomyces, the latter strain (S. albidoflavus sp. UST040711-291)
was cultured, and a set of five structurally similar compounds
were isolated and studied (290, 291). Testing of the S. albidoflavus
compounds identified functional properties, associated with the
2-furanone ring, that delivered powerful antifouling outcomes,
leading the research group to file a corresponding patent on as-
sociated nontoxic antifouling derivatives (290, 292).

Revitalizing potentials: cold-water corals
The cold-water coral Lophelia pertusa can be found at depths of
up to 3,000 m and is extremely slow growing, with radiocarbon
dating suggesting it can live for up to 1,000 y, and form reefs
that have been dated at over 40,000 y old (293). It is highly vul-
nerable to deep-sea fishing gears (294) as well as oil exploration
and extraction practices (295). Such environmental concerns have
led to experimentation with L. pertusa to understand the im-
pacts of sedimentation and discard of drill cuttings (296), as well
as development of a biomimetic sensor that could monitor the
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deep-water sea-floor for impacts from drilling activities, using a
system of cameras interspersed with nubbins and polyps of L. per-
tusa (297). Likewise, while deep-sea sponge skeletons have drawn
the most active interest in the development of biomimetic tissue
scaffolds for biomedical applications, the structure of deep-sea
bamboo corals (Isididae) has noted potential as a bone implant or
substrate for bone revitalization (86, 270, 298).

A “forgotten” ocean economy sector:
current challenges and future opportunities
As illustrated in this Review, the field of marine biomimetics
is characterized by diversity: in the diversity of innovations it
has generated, in the diversity of species that have provided in-
spiration (from megafauna to microorganisms) and in the di-
versity of ocean environments that sustain these species from
the coastal zone to the deep sea. Furthermore, the economic
value of innovations inspired by marine life is substantial (Box 1).
Other key components of biomimetics—imagination, imitation,
and inspiration—are universal elements of the human experi-
ence, suggesting the potential for marine biomimetics as a pro-
ductive activity across geographies.

Box 1. Examples of revenues and costs associated with
key areas of marine biomimetics.
For comparison, estimated annual revenues of key ocean
economy sectors include the offshore wind industry (USD 37
billion), cruise tourism (USD 47 billion), container shipping
(USD 156 billion), seafood (276 billion), offshore oil and gas
(USD 830 billion) (37)

� Rust. According to estimates, in Sweden alone, the an-
nual costs associated with corrosion total approximately
SEK 90 billion (USD 9.5 billion) (299). The development
of biomimetic adhesive coatings, for instance with ceria
nanoparticles inspired by mussel byssus threads, aim to
cut corrosion rates (see the “Adhesion” section) (106).

� Biofouling. The global market for marine coatings is pre-
dicted to top USD 15 billion by 2024, and the economic
losses associated with marine biofouling currently cost
marine industries over USD 150 billion annually (108,
110, 111) (see the “Antifouling” section).

� Tissue scaffolds. In the United States alone, over 49 tissue-
engineering companies have been established (includ-
ing 21 companies in the commercial phase of develop-
ment and generating sales of an estimated USD 9 billion
annually in 2017 (300) (see the “Other application” and
“Deep-sea sponges” sections).

� Robotics. The global underwater robotics market size is
expected to reach USD 6.74 billion by 2025 (301), ben-
efiting heavily from biomimetic design focused on the
morphology and physiology of marine species (see the
“Armor,” “Buoyancy,” “Movement,” “Deep-sea fishes,” and
“Other deep-sea fauna” sections).

� Pharmaceuticals. Revenues from five “marine drugs” (FDA-
approved pharmaceuticals with compounds derived,
synthesized or inspired by naturally occurring marine
natural products—Adcetris, Halaven, Lovaza, Prialt, and
Yondelis) totaled over USD 12.1 billion from 2011 to 2020
(see the “Other applications” section and Supplementary
Material).

Where diversity is less evident, however, is in the beneficia-
ries of marine biomimetics. The majority of innovations identified
in this Review are associated with industries disproportionately
headquartered in the world’s most highly industrialized coun-
tries: shipping, robotics, biomedical/biotechnology, wind energy,
etc (33, 36). Similarly, the capacity to cover costs of developing
innovations and to subsequently access relevant industry coun-
terparts may be a particular challenge to ensuring these activi-
ties are inclusive and the benefits are equitably shared [e.g. the
timeline for bringing a new pharmaceutical to market can stretch
across decades with costs of up to USD 1 billion (26, 230)]. Al-
though capacity building is a recognized priority of the UN Decade
of Ocean Science for Sustainable Development 2021–2030 includ-
ing for deep-sea research (302, 303), investments in marine sci-
ence as well as contributions to the peer-reviewed literature re-
main highly skewed towards the world’s most highly industrial-
ized countries (304).

Marine biomimetics has also been largely neglected in blue
economy strategies and framings (33, 34, 49, 45–48, 50), and we
suggest this may be related to the complexity and diversity of
marine biomimetic applications as well as challenges in credi-
bly valuing its economic benefits. While the economic value of
innovations inspired by marine life can be estimated in some
cases (Box 1), relying solely on monetary valuations would be a
missed opportunity for articulating the unique position marine
biomimetics could play in the blue economy, and for understand-
ing the full value of nature (40, 305). Marine biomimetics does
not depend on continuous marine resource use or extraction, and
often results in innovations that reduce pollution, energy loss,
or emissions, giving it a vanishingly light footprint alongside the
stomping footprints of conventional ocean industries like cruise
tourism or offshore oil and gas extraction. This will position ma-
rine biomimetics as a useful illustration of a blue economy sector
if it can ensure that it not only drives sustainability, but also eq-
uity and inclusivity, while also spurring greater support for fund-
ing basic research on the ocean and the life it contains.

Marine biomimetics is particularly reliant on access to well-
functioning marine ecosystems and the capacity to study these.
The degradation of marine ecosystems has been widely docu-
mented and reported (46, 306). Iconic marine ecosystems like trop-
ical reefs, for instance, face an existential threat from climate
change and increasingly frequent marine heatwaves (307), which
are also a risk to deep-sea ecosystems (308). Similarly, some of the
most remote and least-studied deep-sea environments on Earth
have an uncertain future as proponents of mining the interna-
tional seabed push towards commercial operations, as hydrocar-
bon extraction moves into deeper and riskier waters, and with
continuing use of destructive fishing gears that persist even in
purportedly protected areas (36, 42, 309, 310).

Can articulating the role and potential of marine biomimetics
in the ocean economy prompt greater awareness of the benefits
derived from the ocean? Can marine biomimetics be a sustainable
ocean sector at the very heart of the blue economy, sparking in-
clusive and equitable collaborations across geographies, cultures,
and disciplines? Can marine biomimetics become a clear illustra-
tion of the importance of nonmonetary valuation, spurring the
protection of marine ecosystems as permanent repositories of in-
spiration? Can it inspire care, and ultimately a sense of steward-
ship? In this manuscript, we have illustrated the diverse scope and
scale of marine biomimetics, and propose that working to address
the challenges and questions in this section represents a rich re-
search agenda and action space for scientists and policymakers
alike.
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Notes
We define the ocean economy to be the sum of economic activities
related to the ocean and its coasts. Some consider the blue econ-
omy to be largely synonymous with the ocean economy49, while
others consider it to implicitly encompass additional dimensions
such as sustainability311 and stewardship312. In this paper, we use
this term to describe an aspirational vision of an ocean economy
that is equitable, sustainable and inclusive, in line with articu-
lations introduced around the 2012 UN Convention on Sustain-
able Development (Rio+20) emphasizing more equitable sharing
of benefits313–315 and the Sustainable Blue Economy Finance Prin-
ciples, which define a sustainable blue economy as one that “pro-
vides social and economic benefits for current and future gener-
ations; restores, protects and maintains diverse, productive and
resilient ecosystems; and is based on clean technologies, renew-
able energy and circular material flows”316.
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