
Figure Captions 

Figure 1. The three-step procedure followed to identify the 1,722 individuals of Galba 

species. The number of individuals identified at each step is indicated in the left and the 

species identified are indicated on the right. In Step 1, we photographed the shell and 

dissected three to five adult snails from each of the 166 sites. Fragments of the ITS2 and 

COI genes were sequenced in 146 individuals: Galba cousini/meridensis (1), Galba 

cubensis (41), Galba schirazensis (41), Galba truncatula (30), Galba humilis (34) and 

Galba viator (1). 

Figure 2. Geographic distribution of Galba species in America, based on molecular 

identification. Coordinates are given in Tables S1–S2. The sites Perdriel (Argentina), 

Batallas and Tambillo (Bolivia), Ontario (Canada), San Rafael (Mexico), Canal Salinas 

(Puerto Rico) are not represented since coordinates are missing in the original publications. 

Figure 3. Time-calibrated phylogenetic hypotheses of the model that best approximate 

species status in Galba and species-delimitation methods. The trees showed are the most 

probable topologies based on the multispecies tree model that showed the highest Bayes 

Factor in StarBeast2 (visualized in Densitree), as a function of time (in Mya). Greater 

topological agreement is visualized by a higher density of trees (on the left), whereas 

uncertainty in the height and distribution of nodes are represented by increased 

transparency. The most common topologies are shown in blue, the second most common 

topologies in red and the third in green. The six clusters built with individual gene trees are 

indicated on the extreme right. The number of species recovered varied with eight 

approaches (ABGD with each gene, StarBeast with all genes, STACEY with a variable 

number of species included as prior). For each approach, the colored bars represent 

different species. Bars were striped when the groups included more than one species. 



Clusters as appeared in text are shown in roman numbers. Scale bar represents branch 

length expressed as number of substitutions per site. 

Figure 4. Most common topology of the species tree and phenotype of the most recent 

common ancestor of Galba inferred in StarBeast2. The probability of a cryptic phenotype 

in the most recent common ancestor of Galba species is 100% according to S -DEC and 

BBM and 78% according to S-DIVA. Clusters as appeared in text are shown in roman 

numbers. Node values indicate posterior probability and blue bars indicate 95% credibility 

intervals. The mating system is indicated on the right. 











Table 1. Type localities of G
alba species and sequences of individuals recovered in those localities. R
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Figure S1. Geographic distribution of Galba cubensis, Galba schirazensis and Galba truncatula 
in the European, Asian and African samples retrieved from GenBank. Coordinates are given in 
Table S3.  
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Figure S2. Scenarios for species assignments used to run the multispecies tree models using 
Multi-Threaded Nested Sampling in StarBeast2. The scenario K is an unreal scenario that 
separates the populations of G. viator from Argentina and Chile to test whether splitter models 
showed higher support than lumper models regardless its biological sense.  
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Figure S3. Shells and reproductive and urinary systems of the six Galba species studied. Galba 
cousini/meridensis is the only species that can be morphologically identified.  
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Figure S4. Phylogenetic tree of Galba species based on Bayesian inference in Beast2 of the COI 
gene. All sequences from the current study, as well as the ones retrieved from GenBank, are 
included in this tree. Sequence coloration represents species. Arrows indicate sequences 
belonging to a type locality (see Table 1 for details). Sequence data are given in Tables S1, S2, 
and S3. 
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Figure S5. Phylogenetic tree of Galba species based on Bayesian inference in Beast2 of the 16S 
gene. All sequences were retrieved from GenBank except for sequences from individuals from 
Bosque del Apache (USA). Sequence coloration represents species. Arrows indicate sequences 
belonging to a type locality (see Table 1 for details). Sequence data are given in Tables S1, S2, 
and S3. 
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Figure S6. Phylogenetic tree of Galba species based on Bayesian inference in Beast2 of the 
ITS1 gene. All sequences were retrieved from GenBank except for sequences from individuals 
from Bosque del Apache (USA). Sequence coloration represents species. Arrows indicate 
sequences belonging to a type locality (see Table 1 for details). Sequence data is given in Tables 
S1, S2, and S3. 
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Figure S7. Phylogenetic tree of Galba species based on Bayesian inference in Beast2 of the 
ITS2 gene. All sequences for the current study, as well as the ones retrieved from GenBank, are 
included in this tree. Sequence coloration represents species. Arrows indicate sequences 
belonging to a type locality (see Table 1 for details). Sequence data are given in Tables S1, S2, 
and S3. 
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Figure S8. Haplotype network of Galba species based on 16S gene. Circle sizes are proportional 
to haplotype frequencies and colors represent species. The number of mutations separating 
circles are indicated by dashes. The six clusters detected in the phylogenetic analysis are 
represented as grey shapes. Note that a branch in Cluster I and another in Cluster VI cross other 
connecting branches which are themselves not connected. 
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Figure S9. Haplotype network of Galba species based on COI gene. Circle sizes are proportional 
to haplotype frequencies and colors represent species. The number of mutations separating 
circles are indicated by dashes. The six clusters detected in the phylogenetic analysis are 
represented as grey shapes. 
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Figure S10. Haplotype network of Galba species based on ITS1 gene. Circle sizes are 
proportional to haplotype frequencies and colors represent species. The number of mutations 
separating circles are indicated by dashes. The six clusters detected in the phylogenetic analysis 
are represented as grey shapes. Note that a branch in Cluster VI crosses other connecting 
branches which are themselves not connected. 
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Figure S11. Haplotype network of Galba species based on ITS2 gene. Circle sizes are 
proportional to haplotype frequencies and colors represent species. The number of mutations 
separating circles are indicated by dashes. The six clusters detected in the phylogenetic analysis 
are represented as grey shapes. Note that a branch in Cluster I crosses other connecting branch 
which are themselves not connected. 
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Table Legends (in Appendix 02)  

Table S1. Sampled sites from America in which Galba species were found. Individuals were 
submitted to the three-step procedures for species identification (see text and Fig. 1). For each 
site, we provide the country, site name, geographic coordinates, sampling date, and number of 
sampled individuals. Note that only a fraction of sampled individuals was sequenced. For each 
step (and species), we indicate the number of individuals considered. NA: not available. * 
indicate sites that have been resampled at different dates. Accession names in GenBank (ITS2 
and COI) are indicated into parentheses. Note that in some cases a single sequence was obtained. 
The last column show the 16S and ITS1 sequences that have been incorporated to the study in 
order to test the species hypothesis with the multispecies coalescent models. 
Table S2. Sites retrieved from literature and GenBank where Galba species were molecularly 
identified in America. Both the Galba and Lymnaea names have been used in the literature at 
genus level for the species considered in our study—we used Galba here for this monophyletic 
group of small lymnaeids. For each site, we report the country, site, geographical coordinates 
available sequences of mitochondrial (COI and 16S) and nuclear (ITS1 and ITS2) genes, species 
identification by specific microsatellites, bibliographic reference, and the species name used in 
the reference. Coordinates from Owego, New York were obtained from GoogleEarth and those 
from Correa et al. (2010) from Correa et al. (2011). Some coordinates were corrected in order to 
match the specific site: Rio Negro (Argentina) from Correa et al. (2010), Frias (Argentina) from 
Correa et al. (2011) and Lounnas et al. (2017a), Estanque Lagunillas (Venezuela) from Bargues 
et al. (2011c), Baños del Inca (Peru) from Bargues et al. (2012), Paysandú (Uruguay) from 
Lounnas et al. (2017a) and Geffrier (Guadeloupe) (provided by the authors). The KT461809 
sequence was erroneously tagged as an ITS2 sequence, but is, in fact, a COI sequence. 
Sequences of the individuals molecularly identified by (Medeiros et al. 2014) are missing in the 
original publication and were not uploaded to GenBank. ND, no data available. 
Table S3. Sites retrieved from literature and GenBank where Galba species were molecularly 
identified in Europe, Asia, and Africa. Coordinates that were not given in the original articles or 
in GenBank were best-guess estimated. The information reported for each site is as in Table S2. 
ND, no data available. 
Table S4. Nested sampling results for the eleven species-delimitation models shown in Figure 
S11. The model with the higher Marginal Likelihood estimate is the top-ranked model. All Bayes 
factor (BF) calculations are made against the current taxonomy model (scenario D). Therefore, 
negative BF values indicate support for the current taxonomy model, and positive BF values 
indicate support for the alternative model. 
Table S5. Species of small, mud-dwelling lymnaeids recognized by Burch (1982) in North 
America. The author grouped the 22 species into the genus Fossaria with two subgenera, 
Fossaria (s.s.) and Bakerilymnaea.  
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