A. , Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, vol.408, pp.796-815, 2000.

J. Ammiraju, A. Zuccolo, Y. Yu, X. Song, B. Piegu et al., Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza, The Plant Journal, vol.52, pp.342-351, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02114387

S. Atwell, Y. S. Huang, B. J. Vilhj-almsson, G. Willems, M. Horton et al., Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines, Nature, vol.465, pp.627-631, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00468440

J. L. Bennetzen and H. Wang, The contributions of transposable elements to the structure, function, and evolution of plant genomes, Annual Review of Plant Biology, vol.65, pp.505-530, 2014.

M. Carpentier, E. Manfroi, F. Wei, H. Wu, E. Lasserre et al., Retrotranspositional landscape of Asian rice revealed by 3000 genomes, Nature Communications, vol.10, p.24, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02098307

C. Chaparro, R. Guyot, A. Zuccolo, B. Pi-egu, and O. Panaud, RetrOryza: a database of the rice LTR-retrotransposons, Nucleic Acids Research, vol.35, pp.66-70, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164403

F. Chen, W. Dong, J. Zhang, X. Guo, J. Chen et al., The sequenced angiosperm genomes and genome databases, Frontiers in Plant Science, vol.9, p.418, 2018.

J. Chen, L. Lu, J. Benjamin, S. Diaz, C. N. Hancock et al., Tracking the origin of two genetic components associated with transposable element bursts in domesticated rice, Nature Communications, vol.10, p.641, 2019.

J. Chen, T. R. Wrightsman, S. R. Wessler, and J. E. Stajich, RelocaTE2: a high resolution transposable element insertion site mapping tool for population resequencing, PeerJ, vol.5, p.2942, 2017.

E. B. Chuong, N. C. Elde, and C. Feschotte, Regulatory evolution of innate immunity through co-option of endogenous retroviruses, Science, vol.351, pp.1083-1087, 2016.

D. Copetti, J. Zhang, E. Baidouri, M. Gao, D. Wang et al., RiTE database: a resource database for genus-wide rice genomics and evolutionary biology, BMC Genomics, vol.16, p.538, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02099881

X. Dai, H. Wang, H. Zhou, L. Wang, J. Dvo-r-ak et al., Birth and death of LTR-retrotransposons in Aegilops tauschii, Genetics, vol.210, pp.1039-1051, 2018.

M. El-baidouri and O. Panaud, Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution, Genome Biology and Evolution, vol.5, pp.954-965, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01218174

C. Eun, K. Takagi, K. Park, M. Maekawa, S. Iida et al., Activation and epigenetic regulation of DNA transposon nDart1 in rice, Plant & Cell Physiology, vol.53, pp.857-868, 2012.

R. R. Fuentes, D. Chebotarov, J. Duitama, S. Smith, J. F. De-la-hoz et al., Structural variants in 3000 rice genomes, Genome Research, vol.29, pp.870-880, 2019.

D. Gao, Y. Li, K. D. Kim, B. Abernathy, and S. A. Jackson, Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes, Genome Biology, vol.17, p.7, 2016.

H. Hirochika, K. Sugimoto, Y. Otsuki, H. Tsugawa, and M. Kanda, Retrotransposons of rice involved in mutations induced by tissue culture, Proceedings of the National Academy of Sciences, vol.93, pp.7783-7788, 1996.

C. D. Hirsch and N. M. Springer, Transposable element influences on gene expression in plants, Biochimica et Biophysica Acta (BBA) -Gene Regulatory Mechanisms, vol.1860, pp.157-165, 2017.

, International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome, Nature, vol.436, pp.793-800

N. Jiang, Z. Bao, X. Zhang, H. Hirochika, S. R. Eddy et al., An active DNA transposon family in rice, Nature, vol.421, pp.163-167, 2003.

N. Jiang, C. Feschotte, X. Zhang, and S. R. Wessler, Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs), Current Opinion in Plant Biology, vol.7, pp.115-119, 2004.

N. Jiang and O. Panaud, Plant genetics and genomics: crops and models. Genetics and genomics of rice, pp.55-69, 2013.

M. Komatsu, K. Shimamoto, and J. Kyozuka, Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma, Plant Cell, vol.15, pp.1934-1944, 2003.

S. Li, Q. Xia, F. Wang, X. Yu, J. Ma et al., Laser irradiation-induced DNA methylation changes are heritable and accompanied with transpositional activation of mPing in rice, Frontiers in Plant Science, vol.8, p.363, 2017.

X. Li, Z. Guo, Y. Lv, X. Cen, X. Ding et al., Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study, PLoS Genetics, vol.13, p.1006889, 2017.

F. Lu, J. Ammiraju, A. Sanyal, S. Zhang, R. Song et al., Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes, Proceedings of the National Academy of Sciences, vol.106, pp.2071-2076, 2009.

V. J. Lynch, R. D. Leclerc, G. May, and G. P. Wagner, Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals, Nature Genetics, vol.43, pp.1154-1159, 2011.

B. Mcclintock, Induction of instability at selected loci in maize, Genetics, vol.38, pp.579-599, 1953.

M. Mirouze and C. Vitte, Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes, Journal of Experimental Botany, vol.65, pp.2801-2812, 2014.

O. Panaud, C. Vitte, J. Hivert, S. Muzlak, J. Talag et al., Characterization of transposable elements in the genome of rice (Oryza sativa L.) using Representational Difference Analysis (RDA), Molecular Genetics and Genomics, vol.268, pp.113-121, 2002.

N. Picault, C. Chaparro, B. Piegu, W. Stenger, D. Formey et al., Identification of an active LTR retrotransposon in rice, The Plant Journal, vol.58, pp.754-765, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00685656

B. Piegu, R. Guyot, N. Picault, A. Roulin, A. Saniyal et al., Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice, Genome Research, vol.16, pp.1262-1269, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164404

, The 3,000 rice genomes project, Rice Genome Project, vol.3, p.7, 2014.

E. Sales, J. Viruel, C. Domingo, and L. Marqu, Genome wide association analysis of cold tolerance at germination in temperate japonica rice, Oryza sativa L.) varieties. PLoS ONE, vol.12, p.183416, 2017.

A. Sanyal, J. Ammiraju, F. Lu, Y. Yu, T. Rambo et al., Orthologous comparisons of the Hd1 region across genera reveal Hd1 gene lability within diploid Oryza species and disruptions to microsynteny in Sorghum, Molecular Biology and Evolution, vol.27, pp.2487-2506, 2010.

L. Si, J. Chen, X. Huang, H. Gong, J. Luo et al., OsSPL13 controls grain size in cultivated rice, Nature Genetics, vol.48, pp.447-456, 2016.

S. Song, D. Tian, Z. Zhang, S. Hu, and J. Yu, Rice genomics: over the past two decades and into the future, Proteomics & Bioinformatics, vol.16, pp.397-404, 2018.

J. C. Stein, Y. Yu, D. Copetti, D. J. Zwickl, L. Zhang et al., Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza, Nature Genetics, vol.50, pp.285-296, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02098593

S. D. Tanksley, M. W. Ganal, and G. B. Martin, Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes, Trends in Genetics, vol.11, pp.63-68, 1995.

J. M. Thornsberry, M. M. Goodman, J. Doebley, S. Kresovich, D. Nielsen et al., Dwarf8 polymorphisms associate with variation in flowering time, Nature Genetics, vol.28, pp.286-289, 2001.

S. Tsuchimoto, Y. Hirao, E. Ohtsubo, and H. Ohtsubo, New SINE families from rice, OsSN, with poly(A) at the 3´ends, Genes & Genetic Systems, vol.83, pp.227-236, 2008.

C. Vitte and O. Panaud, LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model, Cytogenetic and Genome Research, vol.110, pp.91-107, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00168793

J. Weng, S. Gu, X. Wan, H. Gao, T. Guo et al., Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight, Cell Research, vol.18, pp.1199-1209, 2008.

T. Wicker, H. Gundlach, M. Spannagl, C. Uauy, P. Borrill et al., Impact of transposable elements on genome structure and evolution in bread wheat, Genome Biology, vol.19, p.103, 2018.

T. Wicker, F. Sabot, A. Hua-van, J. L. Bennetzen, P. Capy et al., A unified classification system for eukaryotic transposable elements, Nature Reviews Genetics, vol.8, p.2165, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169819

H. F. Willard, Chapter 1 -The human genome: a window on human genetics, biology, and medicine, Genomic and personalized medicine, pp.4-27, 2013.

H. Xiao, N. Jiang, E. Schaffner, E. J. Stockinger, and E. Van-der-knaap, A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit, Science, vol.319, pp.1527-1530, 2008.

L. Zhang, J. Hu, X. Han, J. Li, Y. Gao et al., A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour, Nature Communications, vol.10, p.1494, 2019.

Q. J. Zhang and L. Z. Gao, Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species, Bethesda), vol.3, pp.1875-1885, 2017.