S. C. Albrecht, M. C. Sobotta, D. Bausewein, I. Aller, R. Hell et al., Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes, Journal of Biomolecular Screening, vol.19, pp.379-386, 2014.

M. P. Alexander, Differential staining of aborted and nonaborted pollen, Stain Technology, vol.44, pp.117-122, 1969.

I. Aller, N. Rouhier, and A. J. Meyer, Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings, Frontiers in Plant Science, vol.4, p.506, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268531

J. M. Alonso, A. N. Stepanova, T. J. Leisse, C. J. Kim, H. Chen et al., Genome-wide insertional mutagenesis of Arabidopsis thaliana, Science, vol.301, pp.653-657, 2003.

K. Asada, The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons, Annual Review of Plant Physiology and Plant Molecular Biology, vol.50, pp.601-639, 1999.

S. Attacha, D. Solbach, K. Bela, A. Moseler, S. Wagner et al., Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana, Plant, Cell & Environment, vol.40, pp.1281-1295, 2017.

P. Begas, L. Liedgens, A. Moseler, A. J. Meyer, and M. Deponte, Glutaredoxin catalysis requires two distinct glutathione interaction sites, Nature Communications, vol.8, p.14835, 2017.

J. D. Bendtsen, H. Nielsen, G. Von-heijne, and S. Brunak, Improved prediction of signal peptides: SignalP 3.0, Journal of Molecular Biology, vol.340, pp.783-795, 2004.

D. G. Bernard, Y. Cheng, Y. Zhao, and J. Balk, An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis, Plant Physiology, vol.151, pp.590-602, 2009.

C. Berndt, C. Hudemann, E. Hanschmann, R. Axelsson, A. Holmgren et al., How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2?, Antioxidants & Redox Signaling, vol.9, pp.151-157, 2007.

J. A. Bick, F. Aslund, Y. Chen, and T. Leustek, Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5 0 -adenylylsulfate reductase, Proceedings of the National Academy of Sciences, vol.95, pp.8404-8409, 1998.

N. Bryant, J. Lloyd, C. Sweeney, F. Myouga, and D. Meinke, Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis, Plant Physiology, vol.155, pp.1678-1689, 2011.

B. B. Buchanan and Y. Balmer, Redox regulation: a broadening horizon, Annual Review of Plant Biology, vol.56, pp.187-220, 2005.

N. G. Cairns, M. Pasternak, A. Wachter, C. S. Cobbett, and A. J. Meyer, Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo, Plant Physiology, vol.141, pp.446-455, 2006.

O. Chew, J. Whelan, and A. H. Millar, Molecular definition of the ascorbateglutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants, Journal of Biological Chemistry, vol.278, pp.46869-46877, 2003.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana, The Plant Journal, vol.16, pp.735-743, 1998.

G. Creissen, H. Reynolds, Y. Xue, and P. Mullineaux, Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco, The Plant Journal, vol.8, pp.167-175, 1995.

V. Delorme-hinoux, S. Bangash, A. J. Meyer, and J. P. Reichheld, Nuclear thiol redox systems in plants, Plant Science, vol.243, pp.84-95, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02118532

K. Dietz and T. Pfannschmidt, Novel regulators in photosynthetic redox control of plant metabolism and gene expression, Plant Physiology, vol.155, pp.1477-1485, 2011.

S. Ding, R. Jiang, Q. Lu, X. Wen, and C. Lu, Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light, Biochimica et Biophysica Acta-Bioenergetics, vol.1857, pp.665-677, 2016.

S. Ding, L. Wang, Z. Yang, Q. Lu, X. Wen et al., Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis, Journal of Integrative Plant Biology, vol.58, pp.29-47, 2016.

K. Edwards, C. Johnstone, and C. Thompson, A simple and rapid method for the preparation of plant genomic DNA for PCR analysis, Nucleic Acids Research, vol.19, p.1349, 1991.

R. C. Fahey, Novel thiols of prokaryotes, Annual Review of Microbiology, vol.55, pp.333-356, 2001.

I. Finkemeier, M. Goodman, P. Lamkemeyer, A. Kandlbinder, L. J. Sweetlove et al., The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress, Journal of Biological Chemistry, vol.280, pp.12168-12180, 2005.

C. H. Foyer and G. Noctor, Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications, Antioxidants & Redox Signaling, vol.11, pp.861-905, 2009.

C. H. Foyer and G. Noctor, Ascorbate and glutathione: the heart of the redox hub, Plant Physiology, vol.155, pp.2-18, 2011.

M. D. Fricker, Quantitative redox imaging software, Antioxidants & Redox Signaling, vol.24, pp.752-762, 2016.

S. Gilroy, M. Bia?asek, N. Suzuki, M. Devireddy, A. R. Karpi-nski et al., ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants, Plant Physiology, vol.171, pp.1606-1615, 2016.

R. H?-ofgen and L. Willmitzer, Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato (Solanum tuberosum L.), Plant Science, vol.99, pp.221-230, 1990.

J. Ito, J. L. Heazlewood, and A. H. Millar, Analysis of the soluble ATP-binding proteome of plant mitochondria identifies new proteins and nucleotide triphosphate interactions within the matrix, Journal of Proteome Research, vol.5, pp.3459-3469, 2006.

C. Jeffery, Moonlighting proteins-an update, Molecular BioSystems, vol.5, pp.345-350, 2009.

A. Katoh, K. Uenohara, M. Akita, and T. Hashimoto, Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid, Plant Physiology, vol.141, pp.851-857, 2006.

J. Ke, R. H. Behal, S. L. Back, B. J. Nikolau, E. S. Wurtele et al., The role of pyruvate dehydrogenase and acetyl-coenzyme a synthetase in fatty acid synthesis in developing Arabidopsis seeds, Plant Physiology, vol.123, pp.497-508, 2000.

G. Kispal, P. Csere, C. Prohl, and R. Lill, The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins, EMBO Journal, vol.18, pp.3981-3989, 1999.

, The Authors New Phytologist Ó, 2019.

M. Koch, C. Breithaupt, R. Kiefersauer, J. Freigang, R. Huber et al., Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis, EMBO Journal, vol.23, pp.1720-1728, 2004.

J. Leighton and G. Schatz, An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast, EMBO Journal, vol.14, pp.188-195, 1995.

X. Li, H. Ilarslan, L. Brachova, H. R. Qian, L. Li et al., Reverse-genetic analysis of the two biotin-containing subunit genes of the heteromeric acetyl-coenzyme A carboxylase in Arabidopsis indicates a unidirectional functional redundancy, Plant Physiology, vol.155, pp.293-314, 2011.

B. Lim, M. Pasternak, A. J. Meyer, and C. S. Cobbett, Restricting glutamylcysteine synthetase activity to the cytosol or glutathione biosynthesis to the plastid is sufficient for normal plant development and stress tolerance, Plant Biology, vol.16, pp.58-67, 2014.

I. Lutziger and D. J. Oliver, Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis, Plant Physiology, vol.127, pp.615-623, 2001.

S. G. Mansfield and L. G. Briarty, Early embryogenesis in Arabidopsis thaliana. II. The developing embryo, Canadian Journal of Botany, vol.69, pp.461-476, 1991.

C. Marchal, V. Delorme-hinoux, L. Bariat, W. Siala, C. Belin et al., NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells, vol.7, pp.30-44, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01218124

L. Marty, W. Siala, M. Schwarzl?-ander, M. D. Fricker, M. Wirtz et al., The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis, Proceedings of the National Academy of Sciences, vol.106, pp.9109-9114, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00685706

S. C. Maughan, M. Pasternak, N. Cairns, G. Kiddle, T. Brach et al., Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses, Proceedings of the National Academy of Sciences, vol.107, pp.2331-2336, 2010.

L. Meng, J. H. Wong, L. J. Feldman, P. G. Lemaux, and B. B. Buchanan, A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication, Proceedings of the National Academy of Sciences, vol.107, pp.3900-3905, 2010.

A. J. Meyer, The integration of glutathione homeostasis and redox signaling, Journal of Plant Physiology, vol.165, pp.1390-1403, 2008.

A. J. Meyer, T. Brach, L. Marty, S. Kreye, N. Rouhier et al., Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer, The Plant Journal, vol.52, pp.973-986, 2007.

A. J. Meyer and T. Dick, Fluorescent protein-based redox probes, Antioxidants & Redox Signaling, vol.13, pp.621-650, 2010.

A. J. Meyer and M. D. Fricker, Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two-photon laser scanning microscopy, Journal of Microscopy, vol.198, pp.174-181, 2000.

A. J. Meyer, M. J. May, and M. Fricker, Quantitative in vivo measurement of glutathione in Arabidopsis cells, The Plant Journal, vol.27, pp.67-78, 2001.

A. Mhamdi, J. Hager, S. Chaouch, G. Queval, Y. Han et al., Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways, Plant Physiology, vol.153, pp.1144-1160, 2010.

J. Michalska, H. Zauber, B. B. Buchanan, F. J. Cejudo, and P. Geigenberger, NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts, Proceedings of the National Academy of Sciences, vol.106, pp.9908-9913, 2009.

R. Mittler, S. Vanderauwera, M. Gollery, V. Breusegem, and F. , Reactive oxygen gene network of plants, Trends in Plant Science, vol.9, pp.490-498, 2004.

N. Mochizuki, R. Tanaka, B. Grimm, T. Masuda, M. Moulin et al., The cell biology of tetrapyrroles: a life and death struggle, Trends in Plant Science, vol.15, pp.488-498, 2010.

I. M. Moller, Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species, Annual Review of Plant Physiology and Plant Molecular Biology, vol.52, pp.561-591, 2001.

I. M. Moller, P. E. Jensen, and A. Hansson, Oxidative modifications to cellular components in plants, Annual Review of Plant Biology, vol.58, pp.459-481, 2007.

B. Morgan, D. Ezerina, T. N. Amoako, J. Riemer, M. Seedorf et al., Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis, Nature Chemical Biology, vol.9, pp.119-125, 2013.

A. Moseler, I. Aller, S. Wagner, T. Nietzel, J. Przybyla-toscano et al., The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana, Proceedings of the National Academy of Science, vol.112, pp.13735-13740, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269453

S. J. M?-uller-sch?-ussele, R. Wang, D. D. G?-utle, J. Romer, M. Rodriguez-franco et al., Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis, 2019.

N. Navrot, V. Collin, J. Gualberto, E. Gelhaye, M. Hirasawa et al., Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses, Plant Physiology, vol.142, pp.1364-1379, 2006.

T. Nietzel, J. Mostertz, C. Ruberti, S. Wagner, A. Moseler et al., Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination, p.676213, 2019.

M. Pasternak, B. Lim, M. Wirtz, R. Hell, C. S. Cobbett et al., Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development, The Plant Journal, vol.53, pp.999-1012, 2008.

J. Peltier, Y. Cai, Q. Sun, V. Zabrouskov, L. Giacomelli et al., The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts, Molecular and Cellular Proteomics, vol.5, pp.114-133, 2006.

J. M. Perez-ruiz, B. Naranjo, V. Ojeda, M. Guinea, and F. J. Cejudo, NTRCdependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus, Proceedings of the National Academy of Sciences, vol.114, pp.12069-12074, 2017.

P. Porras, J. Pedrajas, E. Martinez-galisteo, C. Padilla, C. Johansson et al., Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency, Biochemical and Biophysical Research Communications, vol.295, pp.1046-1051, 2002.

J. Reichheld, M. Khafif, C. Riondet, M. Droux, G. Bonnard et al., Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development, Plant Cell, vol.19, pp.1851-1865, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00168979

J. Reichheld, E. Meyer, M. Khafif, G. Bonnard, and Y. Meyer, AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana, FEBS Letters, vol.579, pp.337-342, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00169066

S. Reumann, L. Babujee, C. Ma, S. Wienkoop, T. Siemsen et al., Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms, Plant Cell, vol.19, pp.3170-3193, 2007.

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

Y. Sang, R. D. Locy, L. R. Goertzen, A. M. Rashotte, Y. Si et al., Expression, in vivo localization and phylogenetic analysis of a pyridoxine 5 0 -phosphate oxidase in Arabidopsis thaliana, Plant Physiology and Biochemistry, vol.49, pp.88-95, 2011.

Y. Sasaki and Y. Nagano, Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding, Bioscience, Biotechnology and Biochemistry, vol.68, pp.1175-1184, 2004.

T. A. Schaedler, J. D. Thornton, I. Kruse, M. Schwarzl?-ander, A. J. Meyer et al., A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly, Journal of Biological Chemistry, vol.289, pp.23264-23274, 2014.

M. Schwarzl?-ander, T. P. Dick, A. J. Meyer, and B. Morgan, Dissecting redox biology using fluorescent protein sensors, Antioxidants & Redox Signaling, vol.24, pp.680-712, 2016.

, Ó 2019 The Authors New Phytologist Ó, 2019.

M. Schwarzl?-ander, M. Fricker, C. M?-uller, M. L. Brach, T. Novak et al., Confocal imaging of glutathione redox potential in living plant cells, Journal of Microscopy, vol.231, pp.299-316, 2008.

A. J. Serrato, J. M. Perez-ruiz, M. C. Spinola, and F. J. Cejudo, A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana, Journal of Biological Chemistry, vol.279, pp.43821-43827, 2004.

V. Srinivasan, A. J. Pierik, and R. Lill, Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1, Science, vol.343, pp.1137-1140, 2014.

L. Sweetlove, N. Taylor, and C. Leaver, Isolation of intact, functional mitochondria from the model plant Arabidopsis thaliana, Methods in Molecular Biology, vol.372, pp.125-136, 2007.

I. Tzafrir, R. Pena-muralla, A. Dickerman, M. Berg, R. Rogers et al., Identification of genes required for embryo development in Arabidopsis, Plant Physiology, vol.135, pp.1206-1220, 2004.

R. L. Veech, L. V. Eggleston, and H. A. Krebs, The redox state of free nicotinamideadenine dinucleotide phosphate in the cytoplasm of rat liver, Biochemical Journal, vol.115, pp.609-619, 1969.

T. Vernoux, R. C. Wilson, K. A. Seeley, J. P. Reichheld, S. Muroy et al., The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathionedependent pathway involved in initiation and maintenance of cell division during postembryonic root development, Plant Cell, vol.12, pp.97-110, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00165942

C. Waszczak, M. Carmody, and J. Kangasjarvi, Reactive oxygen species in plant signaling, Annual Review of Plant Biology, vol.69, pp.209-236, 2018.

M. Wirtz and R. Hell, Production of cysteine for bacterial and plant biotechnology: application of cysteine feedback-insensitive isoforms of serine acetyltransferase, Amino Acids, vol.24, pp.195-203, 2003.

L. Xu, C. Carrie, S. R. Law, M. W. Murcha, and J. Whelan, Acquisition, conservation, and loss of dual-targeted proteins in land plants, Plant Physiology, vol.161, pp.644-662, 2013.

K. Yoshida and T. Hisabori, Adenine nucleotide-dependent and redoxindependent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana, Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.1857, pp.810-818, 2016.

X. Yu, T. Pasternak, M. Eiblmeier, F. Ditengou, P. Kochersperger et al., Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance, Plant Cell, vol.25, pp.4451-4468, 2013.

F. Zannini, A. Moseler, R. Bchini, T. Dhalleine, A. J. Meyer et al., The thioredoxin-mediated recycling of Arabidopsis thaliana GRXS16 relies on a conserved C-terminal cysteine, Biochimica et Biophysica Acta (BBA) -General Subjects, vol.1863, pp.426-436, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02154449