J. M. Alonso, A. N. Stepanova, T. J. Leisse, C. J. Kim, H. Chen et al.,

J. Zimmerman, P. Barajas, R. Cheuk, C. Gadrinab, C. Heller et al., Genome-wide insertional mutagenesis of Arabidopsis thaliana, Science, vol.301, pp.653-657, 2003.

L. E. Anderson, Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases, Biochimmica et Biophysica Acta, vol.235, pp.237-244, 1971.

A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. Dubois et al., , 2013.

, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation, Chemical Reviews, vol.113, pp.6621-6658

S. Arrivault, M. Guenther, A. Ivakov, R. Feil, D. Vosloh et al., Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations, Plant Journal, vol.5, pp.826-865, 2009.

S. Arrivault, M. Guenther, . Fry, . Sc, . Fuenfgeld et al., Synthesis and use of stable-isotope-labeled internal standards for quantification of phosphorylated metabolites by LC-MS/MS, Analytical Chemistry, vol.87, pp.6896-6904, 2015.

M. R. Badger, H. Fallahi, S. Kaines, and S. Takahashi, Chlorophyll fluorescence screening of Arabidopsis thaliana for CO2 sensitive photorespiration and photoinhibition mutants, Functional Plant Biology, vol.36, pp.867-873, 2009.

Y. Balmer, W. H. Vensel, C. K. Tanaka, W. J. Hurkman, E. Gelhaye et al.,

W. Manieri, P. Schürmann, M. Droux, and B. Buchanan, Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria, Proc. Natl. Acad. Sci. USA, vol.101, pp.2642-2647, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01332173

H. Bauwe, M. Hagemann, and A. R. Fernie, Photorespiration: players, partners and origin, Trends in Plant Science, vol.15, pp.330-336, 2010.

H. Bauwe, M. Hagemann, R. Kern, and S. Timm, Photorespiration has a dual origin and manifold links to central metabolism, Current Opinion in Plant Biology, vol.15, pp.269-275, 2012.

M. Betti, H. Bauwe, F. A. Busch, A. R. Fernie, O. Keech et al., Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement, Journal of Experimental Botany, vol.67, pp.2977-2988, 2016.

R. D. Blackwell, A. Murray, P. J. Lea, A. C. Kendall, N. P. Hall et al., The value of mutants unable to carry out photorespiration, Photosynthesis Research, vol.16, pp.155-176, 1988.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, pp.248-254, 1976.

J. Bourguignon, M. Neuburger, and R. Douce, Resolution and characterization of the glycine cleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase, Biochemical Journal, vol.255, pp.169-78, 1988.

G. Bowes, W. L. Ogren, and R. H. Hageman, Phosphoglycolate production catazyded by ribulose diphosphate carboxylase, Biochemical and Biophysical Research Communications, vol.45, pp.716-722, 1971.

D. C. Boyes, A. M. Zayed, R. Ascenzi, A. J. Mccaskill, N. E. Hoffman et al., , 2001.

, Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants, Plant Cell, vol.13, pp.1499-1510

A. J. Carroll, P. Zhang, L. Withehead, S. Kaines, G. Tcherkez et al., PhenoMeter: a metabolome database search tool using statistical similarity matching of metabolic phenotypes for high-confidence detection of functional links, Frontiers in Bioengineering and Biotechnology, 2015.

A. B. Cousins, B. J. Walker, I. Pracharoenwattana, S. M. Smith, and M. R. Badger, Peroxisomal hydroxypyruvate reductase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release, Photosynthesis Research, vol.108, pp.91-100, 2011.

C. Addad and R. Douce, Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine decarboxylase multienzyme system 2. Crystal structures of H-and L-proteins, Eur. J. Biochem, vol.267, pp.2890-2898, 2000.

A. Fernie, H. Bauwe, M. Eisenhut, F. A. Hanson, D. Hagemann et al., , p.26

P. Westhoff, Perspectives on plant photorespiratory metabolism, Plant Biology, vol.45, pp.748-753, 2013.

F. Flügel, S. Timm, S. Arrivault, A. Florian, M. Stitt et al., , 2017.

, Photorespiratory Metabolite 2-Phosphoglycolate Regulates Photosynthesis and Starch Accumulation in Arabidopsis, The Plant Cell, vol.29, pp.2537-2551

C. H. Foyer, A. J. Bloom, G. Queval, and G. Noctor, Photorespiratory metabolism: genes, mutants, energetics, and redox signaling, Annual Reviews in Plant Biology, vol.60, pp.455-484, 2009.

P. Geigenberger, I. Thormählen, D. M. Daloso, and A. R. Fernie, The unprecedented versatility of the plant thioredoxin system, Trends in Plant Science, vol.22, pp.249-262, 2017.

D. Hasse, E. Andersson, G. Carlsson, A. Masloboy, M. Hagemann et al., Structure of the homodimeric glycine decarboxylase P-protein from Synechocystis sp, 2013.

, PCC 6803 suggests a mechanism for redox regulation, Journal of Biological Chemistry, vol.288, pp.35333-35345

M. Hodges, M. Jossier, E. Boex-fontvieille, and G. Tcherkez, Protein phosphorylation and photorespiration, Plant Biology, vol.15, pp.694-706, 2013.

M. Hodges, Y. Dellero, O. Keech, M. Betti, A. S. Raghavendra et al., Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network, Journal of Experimental Botany, vol.67, pp.3015-3026, 2016.

M. Hodges, M. Jossier, E. Boex-fontvieille, and G. Tcherkez, Protein phosphorylation and photorespiration, Plant Biology, vol.15, pp.694-706, 2013.

C. Hoffmann, B. Plocharski, I. Haferkamp, M. Leroch, R. Ewald et al., From endoplasmic reticulum to mitochondria: Absence of the, 2013.

, Arabidopsis ATP antiporter ER-ANT1 perturbs photorespiration, The Plant Cell, vol.25, pp.2647-2660

O. Keech, P. Dizengremel, and P. Gardeström, Preparation of leaf mitochondria from Arabidopsis thaliana, Physiol Plant, vol.124, pp.403-409, 2005.

O. Keech, P. Gardeström, L. A. Kleczskowski, and N. Rouhier, The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations, Plant Cell Environment, vol.40, pp.553-569, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573241

G. J. Kelly and E. Latzko, Inhibition of spinach-leaf phosphofructokinase by 2-phosphoglycollate, FEBS Letters, vol.68, pp.55-58, 1976.

C. Laloi, N. Rayapuram, Y. Chartier, J. M. Grienenberger, G. Bonnar et al., , 2001.

, Identification and characterization of a mitochondrial thioredoxin system in plants, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.14144-14149

J. Li, S. M. Weraduwage, A. L. Peiser, S. Tietz, S. E. Weise et al., A Cytosolic Bypass and G6P Shunt in Plants Lacking Peroxisomal Hydroxypyruvate Reductase, Plant Physiology DOI, 2019.

R. C. Leegood, P. J. Lea, M. D. Adcock, and R. E. Häusler, The regulation and control of photorespiration, Journal of Experimental Botany, vol.46, pp.1397-1414, 1995.

M. Levey, S. Timm, T. Mettler-altmann, G. L. Borghi, M. Koczor et al.,

H. Bauwe, U. Gowik, and P. Westhoff, Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C4 plant Flaveria bidentis, Journal of Experimental Botany, vol.70, pp.575-587, 2019.

P. E. López-calcagno, S. Fisk, K. L. Brown, S. E. Bull, P. F. South et al., , 2018.

, Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants, Plant Biotechnology Journal

A. H. Millar, C. Knorpp, C. J. Leaver, and S. A. Hill, Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato, Biochemical Journal, vol.334, pp.571-576, 1998.

Y. Nakamura, S. Kanakagiri, K. Van, W. He, and M. H. Spalding, Disruption of the glycolate dehydrogenase gene in the high-CO2-requiring mutant HCR89 of Chlamydomonas reinhardtii, Canadian Journal of Botany, vol.83, pp.820-833, 2005.

T. Obata, A. Florian, S. Timm, H. Bauwe, and A. R. Fernie, On the metabolic interaction of (photo)respiration, Journal of Experimental Botany, vol.67, pp.3003-3014, 2016.

W. L. Ogren and G. Bowes, Ribulose diphosphate carboxylase regulates soybean photorespiration, Nature New Biology, vol.230, pp.159-160, 1971.

D. J. Oliver and G. Sarojini, Regulation of glycine decarboxylase by serine, Progress in photosynthesis research, vol.III, pp.573-579, 1987.

D. J. Oliver, M. Neuburger, J. Bourguignon, and R. Douce, Interaction between the component enzymes of the glycine decarboxylase multienzyme complex, Plant Physiology, vol.94, pp.833-839, 1990.

I. Orf, S. Timm, H. Bauwe, A. R. Fernie, M. Hagemann et al., Can cyanobacteria serve as a model of plant photorespiration? -A comparative analysis of metabolite profiles, Journal of Experimental Botany, vol.67, pp.2941-2952, 2016.

M. C. Palmieri, C. Lindermayr, H. Bauwe, C. Steinhauser, and J. Durner, Regulation of Plant Glycine Decarboxylase by S-Nitrosylation and Glutathionylation, Plant Physiology, vol.152, pp.1514-1528, 2010.

C. Peterhänsel, K. Krause, H. Braun, G. S. Espie, A. R. Fernie et al., Engineering photorespiration: current state and future possibilities, Plant Biology, vol.15, pp.754-758, 2013.

M. E. Pérez-pérez, A. Mauriès, A. Maes, N. J. Tourasse, M. Hamon et al., The deep thioredoxome in Chlamydomonas reinhardtii: new insights into redox regulation, vol.10, pp.1107-1125, 2017.

T. R. Pick, A. Bräutigam, M. A. Schulz, T. Obata, A. R. Fernie et al., PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.3185-3190, 2013.

I. Pracharoenwattana, J. E. Cornah, and S. M. Smith, Arabidopsis peroxisomal malate dehydrogenase functions in ?-oxidation but not in the glyoxylate cycle, The Plant Journal, vol.50, pp.381-390, 2007.

G. Queval and G. Noctor, A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development, Anal Biochem, vol.363, pp.58-69, 2007.

N. Rademacher, R. Kern, T. Fujiwara, T. Mettler-altmann, S. Y. Miyagishima et al., Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions, Journal of Experimental Botany, vol.67, pp.3165-3175, 2016.

. **p-<-0, 01; n.s. -not significant) and plusses between the gldt1 single and the TxGT double mutant

, Figure 5. Oxygen-dependent gas exchange of gldt1, TxGT and the wild type

. Boyes, plants were transferred to normal air (390 ppm CO2) and used for gas exchange measurements at varying oxygen concentrations (3%, 21%, and 50%, balanced with N2) after one week acclimation to the altered atmosphere. Mean values ± SD (n = 5-8) are shown for (A) net CO2 uptake rates (A) and oxygen inhibition of A and (B) CO2 compensation points (?) and slopes of the ?-versus-oxygen concentrations (?), Plants were grown in high CO2 (1500 ppm) with a 10/14 h day/night cycle. After 7 weeks (growth stage 5.1, 2001.

, Pyridine nucleotide contents in wild type, gldt1, trxo1 and TxGT plants during CO2 transition

. Boyes, 2001) plants were transferred in normal air (390 ppm CO2) with otherwise equal conditions. Leaf-material was harvested in HC (9 h light) and in normal air (1 and 9 h light), respectively. Shown are mean values ± SD (n > 6) of pyridine nucleotides (NAD + , NADH, NADP + and NADPH) quantified by spectrophotometric analysis. Asterisks indicate significant alterations of the mutants to the wild type according to Student's t-test

, Levels of selected metabolites in leaves of the wild type, trxo1, gldt1 and TxGT mutants grown in HC and normal air

. Boyes, leaf-material was harvested in both conditions after 9 h illumination. Shown are mean values ± SD (n > 4) of selected metabolites quantified by LC-MS/MS analysis, 2001.

, 01) and plusses between HC and normal air values of each genotype (*p<0.05). For a more comprehensive dataset including statistical evaluation please compare Supp