K. W. Hilu, Polyploidy and the evolution of domesticated plants, Am. J. Bot, vol.80, pp.1494-1499, 1993.

A. Salman-minkov, N. Sabath, and I. Mayrose, Whole-genome duplication as a key factor in crop domestication, Nat. Plants, vol.2, p.16115, 2016.

L. Husted, Cytological studies of the peanut Arachis. II. Chromosome number, morphology and behavior, and their application to the problem of the origin of the cultivated forms, Cytologia, vol.7, pp.396-423, 1936.

A. Fernández and A. Krapovickas, Cromosomas y evolucio? en Arachis (Leguminosae), Bonplandia, vol.8, pp.187-220, 1994.

A. Krapovickas and W. C. Gregory, Taxonomy of the genus Arachis (Leguminosae). Bonplandia, vol.16, pp.1-205, 2007.

D. J. Bertioli, The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut, Nat. Genet, vol.48, pp.438-446, 2016.

G. Kochert, RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae), Am. J. Bot, vol.83, pp.1282-1291, 1996.

G. Seijo, Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH, Am. J. Bot, vol.94, 1963.

M. C. Moretzsohn, A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers, Ann. Bot, vol.111, pp.113-126, 2013.

D. J. Bertioli, An overview of peanut and its wild relatives, Plant Genet. Resour, vol.9, pp.134-149, 2011.

A. Krapovickas, R. O. Vanni, J. R. Pietrarelli, D. E. Williams, and C. E. Simpson, Las Razas de Maní de Bolivia, Bonplandia, vol.18, pp.95-189, 2009.

M. L. Ramos, Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence, Mol. Genet. Genomics, vol.275, pp.578-592, 2006.

D. J. Bertioli, The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome, Ann. Bot, vol.112, pp.545-559, 2013.

S. Nielen, Matita, a new retroelement from peanut: characterization and evolutionary context in the light of the Arachis A-B genome divergence, Mol. Genet. Genomics, vol.287, pp.21-38, 2012.

S. Leal-bertioli, Tetrasomic recombination is surprisingly frequent in allotetraploid Arachis, Genetics, vol.199, pp.1093-1105, 2015.

J. Clevenger, Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut, Mol. Plant, vol.10, pp.309-322, 2017.

J. R. Nguepjop, Evidence of genomic exchanges between homeologous chromosomes in a cross of peanut with newly synthetized allotetraploid hybrids, Front. Plant Sci, vol.7, p.1635, 2016.

S. C. Leal-bertioli, Segmental allopolyploidy in action: increasing diversity through polyploid hybridization and homoeologous recombination, Am. J. Bot, vol.105, pp.1053-1066, 2018.

J. Eid, Real-time DNA sequencing from single polymerase molecules, Science, vol.323, pp.133-138, 2008.

O. Dudchenko, De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds, Science, vol.356, pp.92-95, 2017.

E. Lieberman-aiden, Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, vol.326, pp.289-293, 2009.

C. C. Holbrook and A. K. Culbreath, Registration of 'Tifrunner' peanut, J. Plant Regist, vol.1, p.124, 2007.

S. S. Samoluk, L. Chalup, G. Robledo, and J. G. Seijo, Genome sizes in diploid and allopolyploid Arachis L. species (section Arachis), Genet. Resour. Crop Evol, vol.62, pp.747-763, 2015.

S. S. Dhillon, A. V. Rake, and J. P. Miksche, Reassociation kinetics and cytophotometric characterization of peanut (Arachis hypogaea L.) DNA, Plant Physiol, vol.65, pp.1121-1127, 1980.

D. Bertioli, Supplementary material for "The genome sequence of segmental allotetraploid peanut Arachis hypogaea, CyVerse Data Commons, 2019.

B. Chalhoub, Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome, Science, vol.345, pp.950-953, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01208705

T. Zhang, Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement, Nat. Biotechnol, vol.33, pp.531-537, 2015.

R. T. Gaeta and C. J. Pires, Homoeologous recombination in allopolyploids: the polyploid ratchet, New Phytol, vol.186, pp.18-28, 2010.

B. Hurgobin, Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus, Plant Biotechnol. J, vol.16, pp.1265-1274, 2018.

G. Robledo, G. I. Lavia, and G. Seijo, Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection, Theor. Appl. Genet, vol.118, pp.1295-1307, 2009.

G. Robledo and G. Seijo, Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement, Theor. Appl. Genet, vol.121, pp.1033-1046, 2010.

M. C. Moretzsohn, A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome, BMC Plant Biol, vol.9, p.40, 2009.

G. Levinson and G. A. Gutman, Slipped-strand mispairing: a major mechanism for DNA sequence evolution, Mol. Biol. Evol, vol.4, pp.203-221, 1987.

S. Lanciano, Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants, PLoS Genet, vol.13, p.1006630, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02098598

K. Shirasawa, Characterization of active miniature inverted-repeat transposable elements in the peanut genome, Theor. Appl. Genet, vol.124, pp.1429-1438, 2012.

E. D. Nagy, A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut, BMC Genomics, vol.13, p.469, 2012.

L. Ren, W. Huang, E. K. Cannon, D. J. Bertioli, and S. B. Cannon, A mechanism for genome size reduction following genomic rearrangements, Front. Genet, vol.19, p.454, 2018.

A. P. Fávero, C. E. Simpson, F. M. Valls, and N. A. Velo, Study of evolution of cultivated peanut through crossability studies among Arachis ipaensis, A. duranensis and A. hypogaea, Crop Sci, vol.46, pp.1546-1552, 2006.

M. Grabiele, L. Chalup, G. Robledo, and G. Seijo, Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences, Plant Syst. Evol, vol.298, pp.1151-1165, 2012.

X. Chen, Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens, Proc. Natl Acad. Sci. USA, vol.113, pp.6785-6790, 2016.

G. Blanc and K. H. Wolfe, Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes, Plant Cell, vol.16, pp.1667-1678, 2004.

D. E. Soltis, P. S. Soltis, and J. A. Tate, Advances in the study of polyploidy since plant speciation, New Phytol, vol.161, pp.173-191, 2004.

J. F. Wendel, The wondrous cycles of polyploidy in plants, Am. J. Bot, vol.102, pp.1753-1756, 2015.

S. C. Leal-bertioli, The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits, Environ. and Exp. Bot, vol.84, pp.17-24, 2012.

S. C. Leal-bertioli, Phenotypic effects of allotetraploidization of wild Arachis and their implications for peanut domestication, Am. J. Bot, vol.104, pp.379-388, 2017.

G. L. Stebbins, Types of polyploids: their classification and significance, Adv. Genet, vol.1, pp.403-429, 1947.

J. S. , S. A. , B. E. , S. B. , P. O. et al., Production of base genetic material (including mapping populations and allotetraploid hybrids

C. L. Xiao, MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads, Nat. Methods, vol.14, pp.1072-1074, 2017.

C. S. Chin, Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nat. Methods, vol.10, pp.563-569, 2013.

S. S. Rao, A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, vol.159, pp.1665-1680, 2014.

N. C. Durand, Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments, Cell Syst, vol.3, pp.95-98, 2016.

N. C. Durand, Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom, Cell Syst, vol.3, pp.99-101, 2016.

O. Dudchenko, The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000, 2018.

H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, 2013.

A. Mckenna, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res, vol.20, pp.1297-1303, 2010.

J. Krumsiek, R. Arnold, and T. Rattei, Gepard: a rapid and sensitive tool for creating dotplots on genome scale, Bioinformatics, vol.23, pp.1026-1028, 2007.

G. Agarwal, High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut, Plant Biotechnol. J, vol.16, pp.1954-1967, 2018.

M. K. Pandey, Development and evaluation of a high density genotyping ' Axiom_Arachis' array with 58 K SNPs for accelerating genetics and breeding in groundnut, Sci. Rep, vol.7, p.40577, 2017.

M. Lorieux, MapDisto: fast and efficient computation of genetic linkage maps, Mol. Breed, vol.30, pp.1231-1235, 2012.

S. Kurtz, Versatile and open software for comparing large genomes

, Genome Biol, vol.5, p.12, 2004.

T. D. Wu and S. Nacu, Fast and SNP-tolerant detection of complex variants and splicing in short reads, Bioinformatics, vol.26, pp.873-881, 2010.

B. J. Haas, De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nat. Protoc, vol.8, pp.1494-1512, 2013.

N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter, Near-optimal probabilistic RNA-seq quantification, Nat. Biotechnol, vol.34, pp.525-527, 2016.

M. S. Campbell, MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations, Plant Physiol, vol.164, pp.513-524, 2014.

I. Korf, Gene finding in novel genomes, BMC Bioinformatics, vol.5, p.59, 2004.

M. Stanke, AUGUSTUS: ab initio prediction of alternative transcripts, Nucleic Acids Res, vol.34, pp.435-439, 2006.

J. Clevenger, Y. Chu, B. Scheffler, and P. Ozias-akins, A developmental transcriptome map for allotetraploid Arachis hypogaea, Front. Plant Sci, vol.7, p.1446, 2016.

P. Jones, InterProScan 5: genome-scale protein function classification, Bioinformatics, vol.30, pp.1236-1240, 2014.

C. Camacho, BLAST+: architecture and applications, BMC Bioinformatics, vol.10, pp.421-430, 2009.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

C. Trapnell, Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation, Nat. Biotechnol, vol.28, pp.511-515, 2010.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

A. , A. Rahnenführer, J. Lengauer, and T. , Improved scoring of functional groups from gene expression data by decorrelating GO graph structure, Bioinformatics, vol.22, pp.1600-1607, 2006.

A. , A. Rahnenfuhrer, and J. , topGO: enrichment analysis for gene ontology, R version, vol.2, p.2240, 2016.

M. A. Urich, J. R. Nery, R. Lister, R. J. Schmitz, and J. R. Ecker, MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing, Nat. Protoc, vol.10, pp.475-483, 2015.

F. Krueger and S. R. Andrews, Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications, Bioinformatics, vol.27, pp.1571-1572, 2011.

R. Lister, Human DNA methylomes at base resolution show widespread epigenomic differences, Nature, vol.462, pp.315-322, 2009.

C. Lu, B. C. Meyers, and P. J. Green, Construction of small RNA cDNA libraries for deep sequencing, Methods, vol.43, pp.110-117, 2007.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet J, vol.17, p.10, 2011.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

B. J. Haas, A. L. Delcher, J. R. Wortman, and S. L. Salzberg, DAGchainer: a tool for mining segmental genome duplications and synteny, Bioinformatics, vol.20, pp.3643-3646, 2004.

D. J. Bertioli and S. A. Jackson, Jeremy Schmutz Last updated by author(s), 2019.

, This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist. Statistics For all statistical analyses, Reporting Summary Nature Research wishes to improve the reproducibility of the work that we publish

, A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly The statistical test(s) used AND whether they are one-or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section. A description of all covariates tested A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates

, F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable, For null hypothesis testing, the test statistic

, For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes Estimates of effect sizes (e.g. Cohen's d, Pearson's r)

. Mecat, . Quiver, G. Juicebox, . Joinmap-5-;--finder, . Mite-hunter et al., As cited in manuscript For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information. Data Policy information about availability of data All manuscripts must include a data availability statement. This statement should provide the following information, Axiom Analysis Suite Software, Joinmap 4.1, Blast, SINE

, Arachis hypogaea cv. Tifrunner sequence reads are archived in NCBI under BioProject PRJNA419393, the genome assembly has GenBank accession numbers CM009801-CM009820. Small RNA sequences are deposited with NCBI Sequence Read Archives SAMN06658954, SAMN06658955, SAMN06658956. Whole genome sequence data of diverse accessions are deposited in the Sequence Read Archive of NCBI, The datasets generated during and/or analyzed for this study are available in Supplementary Data, the public repository of the National Center for Biotechnology Information