B. Addepalli and A. G. Hunt, A novel endonuclease activity associated with the Arabidopsis ortholog of the 30-kDa subunit of cleavage and polyadenylation specificity factor, Nucleic Acids Res, vol.35, pp.4453-4463, 2007.

C. R. Alarcon, H. Lee, and H. Goodarzi, N6-methyladenosine marks primary microRNAs for processing, Nature, vol.519, pp.482-485, 2015.

S. J. Anderson, M. C. Kramer, and S. J. Gosai, N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in Arabidopsis, Cell Rep, vol.25, pp.1146-1157, 2018.

D. Arango, D. Sturgill, and N. Alhusaini, Acetylation of cytidine in mRNA promotes translation efficiency, Cell, vol.8674, pp.31383-31387, 2018.

A. E. Arguello, A. N. Deliberto, and R. E. Kleiner, RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein-RNA. interactome, J Am Chem Soc, vol.139, pp.17249-17252, 2017.

L. Arribas-hernández, S. Bressendorff, and M. H. Hansen, An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis, Plant Cell, vol.30, pp.952-967, 2018.

S. Auxilien, V. Guérineau, Z. Szweykowska-kuli?ska, and B. Golinelli-pimpaneau, The human tRNA m (5) C methyltransferase Misu is multisite-specific, RNA Biol, vol.9, pp.1331-1338, 2012.

Z. Bodi, S. Zhong, and S. Mehra, Adenosine methylation in Arabidopsis mRNA is associated with the 3? end and reduced levels cause developmental defects, Front Plant Sci, vol.3, p.48, 2012.

J. A. Bokar, M. E. Rath-shambaugh, and R. Ludwiczak, Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex, J Biol Chem, vol.269, pp.17697-17704, 1994.

J. A. Bokar, M. E. Shambaugh, and D. Polayes, Purification and cDNA cloning of the AdoMetbinding subunit of the human mRNA (N6-adenosine)-methyltransferase, RNA, vol.3, pp.1233-1247, 1997.

J. M. Bujnicki, M. Feder, M. Radlinska, and R. M. Blumenthal, Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA: m6A methyltransferase, J Mol Evol, vol.55, pp.431-444, 2002.

A. L. Burgess, R. David, and I. R. Searle, Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae, BMC Plant Biol, vol.15, 0199.

T. M. Carlile, M. F. Rojas-duran, and B. Zinshteyn, Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells, Nature, vol.515, pp.143-146, 2014.

P. Chen, G. Jäger, and B. Zheng, Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana, BMC Plant Biol, vol.10, 0201.

T. Chen, Y. J. Hao, and Y. Zhang, ) m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency, Cell Stem Cell, vol.16, pp.289-301, 2015.

C. S. Chow, T. N. Lamichhane, and S. K. Mahto, Expanding the nucleotide repertoire of the ribosome with posttranscriptional modifications, ACS Chem Biol, vol.2, pp.610-619, 2007.

X. Cui, Z. Liang, and L. Shen, 5-Methylcytosine RNA methylation in Arabidopsis thaliana, Mol Plant, vol.10, pp.1387-1399, 2017.

R. David, A. Burgess, and B. Parker, Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs, Plant Cell, vol.29, pp.445-460, 2017.

C. De-almeida, H. Scheer, H. Zuber, and D. Gagliardi, RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome, Wiley Interdiscip Rev RNA, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01679700

C. De-almeida, H. Scheer, and A. Gobert, RNA uridylation and decay in plants, Philos Trans R Soc Lond B Biol Sci, vol.373, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02342533

E. De-nadal, G. Ammerer, and F. Posas, Controlling gene expression in response to stress, Nat Rev Genet, vol.12, pp.833-845, 2011.

X. Deng, K. Chen, and G. Z. Luo, Widespread occurrence of N 6-methyladenosine in bacterial mRNA, Nucleic Acids Res, vol.43, pp.6557-6567, 2015.

D. Dominissini, S. Moshitch-moshkovitz, and S. Schwartz, Topology of the human and mouse m 6 A RNA methylomes revealed by m6A-seq, Nature, vol.485, pp.201-206, 2012.

D. Dominissini, S. Moshitch-moshkovitz, and M. Salmon-divon, Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing, Nat Protoc, vol.8, pp.176-189, 2013.

D. Dominissini, S. Nachtergaele, and S. Moshitch-moshkovitz, The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA, Nature, vol.530, pp.441-446, 2016.

H. C. Duan, L. H. Wei, and C. Zhang, ALKBH10B is an RNA N6-methyladenosine demethylase affecting arabidopsis floral transition, Plant Cell, vol.29, pp.2995-3011, 2017.

S. Edelheit, S. Schwartz, and M. R. Mumbach, Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs, PLoS Genet, vol.9, 2013.

R. R. Edupuganti, S. Geiger, and R. G. Lindeboom, N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis, Nat Struct Mol Biol, vol.24, pp.870-878, 2017.

M. Frye, B. T. Harada, M. Behm, and C. He, RNA modifications modulate gene expression during development, Science, vol.361, pp.1346-1349, 2018.

J. M. Fustin, M. Doi, and Y. Yamaguchi, RNA-methylation-dependent RNA processing controls the speed of the circadian clock, Cell, vol.155, pp.793-806, 2013.

M. G. Goll, F. Kirpekar, and K. A. Maggert, Methylation of tRNAAsP by the DNA methyltransferase homolog Dnmt2, Science, vol.311, pp.395-398, 2006.

J. Guo, H. W. Tang, and J. Li, Xio is a component of the Drosophila sex determination pathway and RNA N6-methyladenosine methyltransferase complex, Proc Natl Acad Sci, vol.115, pp.3674-3679, 2018.

A. M. Hartmann, O. Nayler, and F. W. Schwaiger, The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn), Mol Biol Cell, vol.10, pp.3909-3926, 1999.

I. U. Haussmann, Z. Bodi, and E. Sanchez-moran, m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination, Nature, vol.540, pp.301-304, 2016.

C. He, Grand challenge commentary: RNA epigenetics?, Nat Chem Biol, vol.6, p.863, 2010.

T. P. Hoernes, N. Clementi, and K. Faserl, Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code, Nucleic Acids Res, vol.44, pp.852-862, 2015.

Y. Imai, N. Matsuo, and S. Ogawa, Cloning of a gene, YT521, for a novel RNA splicingrelated protein induced by hypoxia/reoxygenation, Brain Res Mol Brain Res, vol.53, pp.33-40, 1998.

G. Jia, Y. Fu, and X. Zhao, N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO, Nat Chem Biol, vol.7, pp.885-887, 2011.

K. Kaufmann, A. Pajoro, and G. C. Angenent, Regulation of transcription in plants: mechanisms controlling developmental switches, Nat Rev Genet, vol.11, p.830, 2010.

S. Ke, E. A. Alemu, and C. Mertens, A majority of m6A residues are in the last exons, allowing the potential for 3? UTR regulation, Genes Dev, vol.29, pp.2037-2053, 2015.

S. Ke, A. Pandya-jones, and Y. Saito, ) m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover, Genes Dev, vol.31, pp.990-1006, 2017.

P. Knuckles, T. Lence, and I. U. Haussmann, Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d, Genes Dev, vol.32, pp.415-429, 2018.

K. M. Lelli, M. Slattery, and R. S. Mann, Disentangling the many layers of eukaryotic transcriptional regulation, Annu Rev Genet, vol.46, pp.43-68, 2012.

T. Lence, J. Akhtar, and M. Bayer, m6A modulates neuronal functions and sex determination in Drosophila, Nature, vol.540, pp.242-247, 2016.

D. Li, H. Zhang, and Y. Hong, Genome-wide identification, biochemical chracterization, and expression analyses of the YTH domain-containing RNA-binding protein family in Arabidopsis and rice, Plant Mol Biol Rep, vol.32, pp.1169-1186, 2014.

F. Li, D. Zhao, J. Wu, and Y. Shi, Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals an aromatic cage for m(6)A recognition, Cell Res, vol.24, pp.1490-1492, 2014.

Q. Q. Li, Z. Liu, W. Lu, and M. Liu, Interplay between alternative splicing and alternative polyadenylation defines the expression outcome of the plant unique OXIDATIVE, 2017.

, Gene. Sci Rep, vol.7, p.2052

S. Li and C. E. Mason, The pivotal regulatory landscape of RNA modifications, Annu Rev Genomics Hum Genet, vol.15, pp.127-150, 2014.

X. Li, S. Ma, and C. Yi, Pseudouridine: the fifth RNA nucleotide with renewed interests, Curr Opin Chem Biol, vol.33, pp.108-116, 2016.

X. Li, X. Xiong, and K. Wang, Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome, Nat Chem Biol, vol.12, pp.311-316, 2016.

Y. Li, X. Wang, and C. Li, Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification, RNA Biol, vol.11, pp.1180-1188, 2014.

Z. Li, R. Wang, and Y. Gao, The Arabidopsis CPSF30-L gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene NRT1. 1, New Phytol, vol.216, pp.1205-1222, 2017.

Z. Li, J. Shi, and L. Yu, N 6-methyl-adenosine level in Nicotiana tabacum is associated with tobacco mosaic virus, Virol J, vol.15, p.87, 2018.

J. Liu, Y. Yue, and D. Han, A METTL3-METTL14 complex mediates mammalian nuclear RNA N 6-adenosine methylation, Nat Chem Biol, vol.10, p.93, 2014.

N. Liu, Q. Dai, and G. Zheng, N 6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions, Nature, vol.518, pp.560-564, 2015.

G. Z. Luo, A. Macqueen, and G. Zheng, Unique features of the m6A methylome in Arabidopsis thaliana, Nat Commun, vol.5, p.5630, 2014.

S. Luo and L. Tong, Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain, Proc Natl Acad Sci, vol.111, pp.13834-13839, 2014.

M. Martínez-pérez, F. Aparicio, and M. P. López-gresa, Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs, Proc Natl Acad Sci, vol.114, pp.10755-10760, 2017.

J. Mata, S. Marguerat, and J. Bähler, Post-transcriptional control of gene expression: a genomewide perspective, Trends Biochem Sci, vol.30, pp.506-514, 2005.

K. D. Meyer, Y. Saletore, and P. Zumbo, Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons, Cell, vol.149, pp.1635-1646, 2012.

D. Mielecki, D. ?. Zugaj, and A. Muszewska, Novel AlkB dioxygenases--alternative models for in silico and in vivo studies, PloS One, vol.7, 2012.

Y. Motorin and H. Grosjean, Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme, RNA, vol.5, pp.1105-1118, 1999.

Y. Motorin and M. Helm, tRNA stabilization by modified nucleotides, Biochemistry, vol.49, pp.4934-4944, 2010.

S. H. Ok, H. J. Jeong, and J. M. Bae, Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-terminal region that mediates nuclear localization, Plant Physiol, vol.139, pp.138-150, 2005.

D. P. Patil, C. K. Chen, and B. F. Pickering, m6A RNA methylation promotes XIST-mediated transcriptional repression, Nature, vol.537, pp.369-373, 2016.

C. Pfaff, H. F. Ehrnsberger, and M. Flores-tornero, ALY RNA-binding proteins are required for nucleo-cytosolic mRNA transport and modulate plant growth and development, Plant Physiol, vol.177, pp.226-240, 2018.

X. L. Ping, B. F. Sun, and L. Wang, Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase, Cell Res, vol.24, pp.177-189, 2014.

E. N. Powers and G. A. Brar, m6A and eIF2?-P team up to Tackle ATF4 translation during stress, Mol Cell, vol.69, pp.537-538, 2018.

C. Roost, S. R. Lynch, and P. J. Batista, Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification, J Am Chem Soc, vol.137, pp.2107-2115, 2015.

N. A. Rosa-mercado, J. B. Withers, and J. A. Steitz, Settling the m6A debate: methylation of mature mRNA is not dynamic but accelerates turnover, Genes Dev, vol.31, pp.957-958, 2017.

K. Ruzicka, M. Zhang, and A. Campilho, Identification of factors required for m(6) A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI, New Phytol, vol.215, pp.157-172, 2017.

Y. Saletore, K. Meyer, and J. Korlach, The birth of the epitranscriptome: deciphering the function of RNA modifications, Genome Biol, vol.13, p.175, 2012.

B. Schaefke, W. Sun, and Y. S. Li, The evolution of posttranscriptional regulation, Wiley Interdiscip Rev RNA:e1485, 2018.

S. Schwartz, S. D. Agarwala, and M. R. Mumbach, High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis, Cell, vol.155, pp.1409-1421, 2013.

S. Schwartz, D. A. Bernstein, and M. R. Mumbach, Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA, Cell, vol.159, pp.148-162, 2014.

, Chemical RNA Modifications: The Plant Epitranscriptome

S. Schwartz, M. R. Mumbach, and M. Jovanovic, Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5? sites, Cell Rep, vol.8, pp.284-296, 2014.

J. Scutenaire, J. M. Deragon, and V. Jean, The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis, Plant Cell, vol.30, pp.986-1005, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02100408

L. Shen, Z. Liang, and X. Gu, N6-Methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis, Dev Cell, vol.38, pp.186-200, 2016.

K. Sinigaglia, D. Wiatrek, and A. Khan, ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep, Biochim Biophys Acta Gene Regul Mech. S1874, vol.9399, pp.30232-30235, 2018.

P. ?led? and M. Jinek, Structural insights into the molecular mechanism of the m6A writer complex. Elife 5:e18434, 2016.

J. Song and C. Yi, Chemical modifications to RNA: a new layer of gene expression regulation, ACS Chem Biol, vol.12, pp.316-325, 2017.

J. E. Squires and T. Preiss, Function and detection of 5-methylcytosine in eukaryotic RNA, Epigenomics, vol.2, pp.709-715, 2010.

J. E. Squires, H. R. Patel, and M. Nousch, Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA, Nucleic Acids Res, vol.40, pp.5023-5033, 2012.

P. Stoilov, I. Rafalska, and S. Stamm, YTH: a new domain in nuclear proteins, Trends Biochem Sci, vol.27, pp.495-497, 2002.

M. Takenaka, A. Zehrmann, and D. Verbitskiy, RNA editing in plants and its evolution, Annu Rev Genet, vol.47, pp.335-352, 2013.

D. Theler, C. Dominguez, and M. Blatter, Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA, Nucleic Acids Res, vol.42, pp.13911-13919, 2014.

L. Vespa, G. Vachon, and F. Berger, The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication, Plant Physiol, vol.134, pp.1283-1292, 2004.

Y. Wan, K. Tang, and D. Zhang, Transcriptome-wide high-throughput deep m 6 A-seq reveals unique differential m6A methylation patterns between three organs in Arabidopsis thaliana, 2015.

, Genome Biol, vol.16, p.272

P. Wang, K. A. Doxtader, and Y. Nam, Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases, Mol Cell, vol.63, pp.306-317, 2016.

Y. Wang, Y. Li, and J. I. Toth, N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells, Nat Cell Biol, vol.16, pp.191-198, 2014.

L. H. Wei, P. Song, and Y. Wang, The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis, Plant Cell, vol.30, pp.968-985, 2018.

Y. Xiang, B. Laurent, and C. H. Hsu, RNA m6A methylation regulates the ultraviolet-induced DNA damage response, Nature, vol.543, pp.573-576, 2017.

C. Xu, K. Liu, and W. Tempel, Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single stranded m6A RNA demethylation, J Biol Chem, vol.289, pp.17299-17311, 2014.

C. Xu, X. Wang, and K. Liu, Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain, Nat Chem Biol, vol.10, pp.927-929, 2014.

C. Xu, K. Liu, and H. Ahmed, Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins, J Biol Chem, vol.290, pp.24902-24913, 2015.

A. L. Yablonovitch, P. Deng, D. Jacobson, and J. B. Li, The evolution and adaptation of A-to-I RNA editing, PLoS Genet, vol.13, 2017.

C. G. Litholdo and C. Bousquet-antonelli,

P. K. Yadav and R. Rajasekharan, The m6A methyltransferase Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology in haploid yeast cells, J Biol Chem, vol.292, pp.13727-13744, 2017.

Y. Yue, J. Liu, and X. Cui, VIRMA mediates preferential m6A mRNA methylation in 3? UTR and near stop codon and associates with alternative polyadenylation, Cell Discov, vol.4, issue.10, 2018.

Z. Zhang, D. Theler, and K. H. Kaminska, The YTH domain is a novel RNA binding domain, J Biol Chem, vol.285, pp.14701-14710, 2010.

B. S. Zhao, I. A. Roundtree, and C. He, Post-transcriptional gene regulation by mRNA modifications, Nat Rev Mol Cell Biol, vol.18, pp.31-42, 2017.

G. Zheng, J. A. Dahl, and Y. Niu, ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility, Mol Cell, vol.49, pp.18-29, 2013.

X. Zhoa, Y. Yang, and B. F. Sun, FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis, Cell Res, vol.24, pp.140-1419, 2014.

S. Zhong, H. Li, and Z. Bodi, MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor, Plant Cell, vol.20, pp.1278-1288, 2008.

J. Zhou, J. Wan, and X. Gao, Dynamic m 6 A mRNA methylation directs translational control of heat shock response, Nature, vol.526, pp.591-594, 2015.

K. I. Zhou, M. Parisien, and Q. Dai, N6-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding, J Mol Biol, vol.428, pp.822-833, 2016.

T. Zhu, I. A. Roundtree, and P. Wang, Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine, Cell Res, vol.24, pp.1493-1496, 2014.

, Chemical RNA Modifications: The Plant Epitranscriptome