Readers of the m6A epitranscriptomic code
Abstract
N6-methyl adenosine (m6A) is the most prevalent and evolutionarily conserved, modification of polymerase II transcribed RNAs. By post-transcriptionally controlling patterns of gene expression, m6A deposition is crucial for organism reproduction, development and likely stress responses. m6A mostly mediates its effect by recruiting reader proteins that either directly accommodate the modified residue in a hydrophobic pocket formed by their YTH domain, or otherwise have their affinity positively influenced by the presence of m6A. We firstly describe here the evolutionary history, and review known molecular and physiological roles of eukaryote YTH readers. In the second part, we present non YTH-proteins whose roles as m6A readers largely remain to be explored. The diversity and multiplicity of m6A readers together with the possibility to regulate their expression and function in response to various cues, offers a multitude of possible combinations to rapidly and finely tune gene expression patterns and hence cellular plasticity.
Origin : Files produced by the author(s)
Loading...