Learning and robustness to catch-andrelease fishing in a shark social network

Abstract : Individuals can play different roles in maintaining connectivity and social cohesion in animal populations and thereby influence population robustness to perturbations.We performed a social network analysis in a reef shark population to assess the vulnerability of the global network to node removal under different scenarios. We found that the network was generally robust to the removal of nodes with high centrality. The network appeared also highly robust to experimental fishing. Individual shark catchability decreased as a function of experience, as revealed by comparing capture frequency and site presence. Altogether, these features suggest that individuals learnt to avoid capture, which ultimately increased network robustness to experimental catch-and-release. Our results also suggest that some caution must be taken when using capture–recapture models often used to assess population size as assumptions (such as equal probabilities of capture and recapture) may be violated by individual learning to escape recapture.
Liste complète des métadonnées

Contributeur : Dorian Miler <>
Soumis le : jeudi 13 juillet 2017 - 11:50:00
Dernière modification le : mardi 16 octobre 2018 - 01:01:37

Lien texte intégral




Johann Mourier, Culum Brown, Serge Planes. Learning and robustness to catch-andrelease fishing in a shark social network. Biology Letters, Royal Society, The, 2017, 〈10.1098/rsbl.2016.0824〉. 〈hal-01561754〉



Consultations de la notice