D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.
DOI : 10.1016/j.cell.2011.02.013

J. Disalvo, M. Bayne, G. Conn, P. Kwok, P. Trivedi et al., Purification and characterization of a naturally occurring vascular endothelial growth factor.placenta growth factor heterodimer, J Biol Chem, vol.270, issue.13, pp.7717-2331, 1995.

S. Koch and L. Claesson-welsh, Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med, pp.6502-22762016, 2012.

R. Kendall and K. Thomas, Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor., Proceedings of the National Academy of Sciences, vol.90, issue.22, pp.10705-10714, 1993.
DOI : 10.1073/pnas.90.22.10705

M. Saghiri, A. Asatourian, J. Orangi, C. Sorenson, N. Sheibani et al., Functional role of inorganic trace elements in angiogenesis???Part II: Cr, Si, Zn, Cu, and S, Critical Reviews in Oncology/Hematology, vol.96, issue.1, pp.143-55, 2015.
DOI : 10.1016/j.critrevonc.2015.05.011

D. Andrea, L. Romanelli, A. , D. Stasi, R. Pedone et al., Bioinorganic aspects of angiogenesis, Dalton Transactions, vol.36, issue.33, pp.7625-7661, 2010.
DOI : 10.1039/c002439b

Y. Zhou, K. Bourcy, and Y. Kang, Copper-induced regression of cardiomyocyte hypertrophy is associated with enhanced vascular endothelial growth factor receptor-1 signalling pathway, Cardiovascular Research, vol.84, issue.1, pp.54-63, 2009.
DOI : 10.1093/cvr/cvp178

Z. Qin, J. Caruso, B. Lai, A. Matusch, and J. Becker, Trace metal imaging with high spatial resolution: Applications in biomedicine, Metallomics, vol.21, issue.1, pp.28-37, 2010.
DOI : 10.1039/C0MT00048E

L. Finney, S. Vogt, T. Fukai, and D. Glesne, COPPER AND ANGIOGENESIS: UNRAVELLING A RELATIONSHIP KEY TO CANCER PROGRESSION, Clinical and Experimental Pharmacology and Physiology, vol.10, issue.1, pp.88-94, 2008.
DOI : 10.1111/j.1440-1681.2008.04969.x

L. Zilberberg, S. Shinkaruk, O. Lequin, B. Rousseau, M. Hagedorn et al., Structure and Inhibitory Effects on Angiogenesis and Tumor Development of a New Vascular Endothelial Growth Inhibitor, Journal of Biological Chemistry, vol.278, issue.37, pp.35564-73, 2003.
DOI : 10.1074/jbc.M304435200

M. Reille-seroussi, J. Gaucher, C. Desole, N. Gagey-eilstein, F. Brachet et al., Vascular Endothelial Growth Factor Peptide Ligands Explored by Competition Assay and Isothermal Titration Calorimetry, Biochemistry, vol.54, issue.33, pp.5147-56, 2015.
DOI : 10.1021/acs.biochem.5b00722

V. Goncalves, B. Gautier, C. Garbay, M. Vidal, and N. Inguimbert, Structure-based design of a bicyclic peptide antagonist of the vascular endothelial growth factor receptors, Journal of Peptide Science, vol.22, issue.6, pp.767-72, 2008.
DOI : 10.1002/psc.965

B. Gautier, M. Miteva, V. Goncalves, F. Huguenot, P. Coric et al., Targeting the Proangiogenic VEGF-VEGFR Protein-Protein Interface with Drug-like Compounds by In Silico and In??Vitro Screening, Chemistry & Biology, vol.18, issue.12, pp.1631-1640, 2011.
DOI : 10.1016/j.chembiol.2011.10.016

URL : https://hal.archives-ouvertes.fr/hal-01061760

S. Kenrick and P. Daugherty, Bacterial display enables efficient and quantitative peptide affinity maturation, Protein Engineering Design and Selection, vol.23, issue.1, pp.9-17, 2010.
DOI : 10.1093/protein/gzp065

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791049

W. Fairbrother, H. Christinger, A. Cochran, G. Fuh, C. Keenan et al., Novel Peptides Selected to Bind Vascular Endothelial Growth Factor Target the Receptor-Binding Site, Biochemistry, vol.37, issue.51, pp.17754-64, 1998.
DOI : 10.1021/bi981931e

A. Fedorova, K. Zobel, H. Gill, A. Ogasawara, J. Flores et al., The Development of Peptide-Based Tools for the Analysis of Angiogenesis, Chemistry & Biology, vol.18, issue.7, pp.839-884, 2011.
DOI : 10.1016/j.chembiol.2011.05.011

C. Wiesmann, G. Fuh, H. Christinger, C. Eigenbrot, J. Wells et al., Crystal Structure at 1.7 ?? Resolution of VEGF in Complex with Domain 2 of the Flt-1 Receptor, Cell, vol.91, issue.5, pp.695-704, 1997.
DOI : 10.1016/S0092-8674(00)80456-0

M. Starovasnik, H. Christinger, C. Wiesmann, M. Champe, A. De-vos et al., Solution structure of the VEGF-binding domain of Flt-1: comparison of its free and bound states, Journal of Molecular Biology, vol.293, issue.3, pp.531-575, 1999.
DOI : 10.1006/jmbi.1999.3134

H. Christinger, G. Fuh, A. De-vos, and C. Wiesmann, The Crystal Structure of Placental Growth Factor in Complex with Domain 2 of Vascular Endothelial Growth Factor Receptor-1, M313237200 PMID, pp.10382-10390, 2004.
DOI : 10.1074/jbc.M313237200

S. Iyer, P. Darley, and K. Acharya, Structural Insights into the Binding of Vascular Endothelial Growth Factor-B by VEGFR-1D2: RECOGNITION AND SPECIFICITY, Journal of Biological Chemistry, vol.285, issue.31, pp.23779-89, 2010.
DOI : 10.1074/jbc.M110.130658

H. Fischer, M. De-oliveira-neto, H. Napolitano, I. Polikarpov, and A. Craievich, Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale, Journal of Applied Crystallography, vol.313, issue.1, pp.101-110, 2010.
DOI : 10.1107/S0021889809043076/ce5058sup1.pdf

P. Konarev, V. Volkov, A. Sokolova, M. Koch, and D. Svergun, : a Windows PC-based system for small-angle scattering data analysis, Journal of Applied Crystallography, vol.36, issue.5, pp.1277-82, 2003.
DOI : 10.1107/S0021889803012779

D. Svergun, Determination of the regularization parameter in indirect-transform methods using perceptual criteria, Journal of Applied Crystallography, vol.25, issue.4, pp.495-503, 1992.
DOI : 10.1107/S0021889892001663

D. Svergun, C. Barberato, and M. Koch, ??? a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates, Journal of Applied Crystallography, vol.28, issue.6, pp.768-73, 1995.
DOI : 10.1107/S0021889895007047

G. Malgieri, L. Zaccaro, M. Leone, E. Bucci, S. Esposito et al., Zinc to cadmium replacement in the A. thaliana SUPERMAN Cys(2) His(2) zinc finger induces structural rearrangements of typical DNA base determinant positions, Biopolymers. Epub, vol.95, issue.11, pp.801-811, 2011.

M. Williamson, Using chemical shift perturbation to characterise ligand binding, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.73, pp.1-16, 2013.
DOI : 10.1016/j.pnmrs.2013.02.001

L. Hemmingsen, L. Olsen, A. J. Sauer, and S. , First principle calculations of (113)Cd chemical shifts for proteins and model systems, J Biol Inorg Chem. Epub, vol.929, issue.506, pp.591-600, 2004.

K. Pervushin, G. Wider, and K. Wuthrich, Single transition-to-single transition polarization transfer (ST2-PT) in [15N,1H]-TROSY, Journal of Biomolecular NMR, vol.12, issue.2, pp.345-353, 1998.
DOI : 10.1023/A:1008268930690

M. Czisch and R. Boelens, Sensitivity Enhancement in the TROSY Experiment, Journal of Magnetic Resonance, vol.134, issue.1, pp.158-60, 1998.
DOI : 10.1006/jmre.1998.1483

I. Kleckner and M. Foster, An introduction to NMR-based approaches for measuring protein dynamics, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1814, issue.8, pp.942-68, 2010.
DOI : 10.1016/j.bbapap.2010.10.012

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3061256

S. Hayward and H. Berendsen, Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme, Proteins: Structure, Function, and Genetics, vol.50, issue.2, pp.144-54, 1998.
DOI : 10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N

M. Brozzo, S. Bjelic, K. Kisko, T. Schleier, V. Leppanen et al., Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization, Blood, vol.119, issue.7, pp.1781-1789, 2011.
DOI : 10.1182/blood-2011-11-390922

V. Leppanen, A. Prota, M. Jeltsch, A. Anisimov, N. Kalkkinen et al., Structural determinants of growth factor binding and specificity by VEGF receptor 2, Proceedings of the National Academy of Sciences, vol.107, issue.6, pp.2425-2455, 2010.
DOI : 10.1073/pnas.0914318107

V. Goncalves, B. Gautier, C. Garbay, M. Vidal, and N. Inguimbert, Development of a chemiluminescent screening assay for detection of vascular endothelial growth factor receptor 1 ligands, Analytical Biochemistry, vol.366, issue.1, p.17482136, 2007.
DOI : 10.1016/j.ab.2007.03.027

URL : https://hal.archives-ouvertes.fr/inserm-00168674

L. Rulisek and J. Vondrasek, Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins, J Inorg Biochem, vol.71, pp.3-4115, 1998.

A. Kay, Detecting and minimizing zinc contamination in physiological solutions, BMC Physiol, vol.4, p.15113426, 2004.

M. Shoshan, D. Shalev, and E. Tshuva, Peptide Models of Cu(I) and Zn(II) Metallochaperones: The Effect of pH on Coordination and Mechanistic Implications, Inorganic Chemistry, vol.52, issue.6, pp.2993-3000, 2013.
DOI : 10.1021/ic302404w

L. Morris, B. Milne, G. Thompson, and M. Jaspars, Conformational change in the thiazole and oxazoline containing cyclic octapeptides, the patellamides. Part 1. Cu2+ and Zn2+ induced conformational change, Journal of the Chemical Society, Perkin Transactions 2, issue.6, pp.1072-1077, 2002.

T. Janek, L. Rodrigues, E. Gudina, and Z. Czyznikowska, Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions, Colloids and Surfaces B: Biointerfaces, vol.146, pp.498-506, 2016.
DOI : 10.1016/j.colsurfb.2016.06.055

I. Dokmanic, M. Sikic, and S. Tomic, Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.3, pp.257-63, 2008.
DOI : 10.1107/S090744490706595X/en5255sup1.pdf

S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar et al., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, vol.29, issue.7, pp.845-54, 2013.
DOI : 10.1093/bioinformatics/btt055

M. Rukgauer, J. Klein, and J. Kruse-jarres, Reference Values for the Trace Elements Copper, Manganese, Selenium, and Zinc in the Serum / Plasma of Children, Adolescents, and Adults, Journal of Trace Elements in Medicine and Biology, vol.11, issue.2, pp.92-100, 1997.
DOI : 10.1016/S0946-672X(97)80032-6

C. Feillet-coudray, N. Meunier, M. Rambeau, M. Brandolini-bunlon, J. Tressol et al., Longterm moderate zinc supplementation increases exchangeable zinc pool masses in late-middle-aged men: the Zenith Study, Am J Clin Nutr, vol.82, issue.1, pp.103-113, 2005.

W. Buckley and R. Vanderpool, Analytical variables affecting exchangeable copper determination in blood plasma, BioMetals, vol.75, issue.6, pp.601-613, 2008.
DOI : 10.1007/s10534-008-9146-7

F. Martin, T. Linden, D. Katschinski, F. Oehme, I. Flamme et al., Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation, Blood, vol.105, issue.12, pp.4613-4622, 2005.
DOI : 10.1182/blood-2004-10-3980

Q. Li, X. Ding, and Y. Kang, Copper promotion of angiogenesis in isolated rat aortic ring: role of vascular endothelial growth factor, The Journal of Nutritional Biochemistry, vol.25, issue.1, pp.44-53, 2014.
DOI : 10.1016/j.jnutbio.2013.08.013

S. Li, H. Xie, S. Li, and Y. Kang, Copper stimulates growth of human umbilical vein endothelial cells in a vascular endothelial growth factor-independent pathway, Experimental Biology and Medicine, vol.279, issue.1, pp.77-82, 2011.
DOI : 10.1258/ebm.2011.011267

L. Zheng, P. Han, J. Liu, R. Li, W. Yin et al., Role of copper in regression of cardiac hypertrophy, Pharmacology & Therapeutics, vol.148, pp.66-84, 2015.
DOI : 10.1016/j.pharmthera.2014.11.014

Y. Tsai, C. Fotinou, R. R. Yelland, T. Frankel, P. Zachary et al., Structural studies of neuropilin-2 reveal a zinc ion binding site remote from the vascular endothelial growth factor binding pocket, The FEBS Journal, vol.69, issue.10, pp.1921-1955, 2016.
DOI : 10.1111/febs.13711

K. Huang, C. Andersson, G. Roomans, N. Ito, and L. Claesson-welsh, Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers, The International Journal of Biochemistry & Cell Biology, vol.33, issue.4, pp.315-339, 2001.
DOI : 10.1016/S1357-2725(01)00019-X

M. Autiero, J. Waltenberger, D. Communi, A. Kranz, L. Moons et al., Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1, Nature Medicine, vol.9, issue.7, pp.936-979, 2003.
DOI : 10.1038/nm884

M. Cudmore, P. Hewett, S. Ahmad, K. Wang, M. Cai et al., The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis, Nature Communications, vol.117, pp.972-22828632, 2012.
DOI : 10.1002/(SICI)1097-0215(19960611)66:6<784::AID-IJC13>3.0.CO;2-3

N. Rahimi, V. Dayanir, and K. Lashkari, Receptor Chimeras Indicate That the Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1) Modulates Mitogenic Activity of VEGFR-2 in Endothelial Cells, Journal of Biological Chemistry, vol.275, issue.22, pp.16986-92, 2000.
DOI : 10.1074/jbc.M000528200

Z. Ahmadova, V. Yagublu, T. Forg, Y. Hajiyeva, R. Jesenofsky et al., Fluorescent resonance energy transfer imaging of VEGFR dimerization, Anticancer Res, vol.34, issue.30, pp.2123-2156, 2014.

M. Gabhann, F. Popel, and A. , Dimerization of VEGF receptors and implications for signal transduction: A computational study, Biophysical Chemistry, vol.128, issue.2-3, pp.125-164, 2007.
DOI : 10.1016/j.bpc.2007.03.010

B. Pan, B. Li, S. Russell, J. Tom, A. Cochran et al., Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor, Journal of Molecular Biology, vol.316, issue.3, pp.769-87, 2002.
DOI : 10.1006/jmbi.2001.5370

F. Boyaud, Z. Mahiout, C. Lenoir, S. Tang, J. Wdzieczak-bakala et al., First Total Synthesis and Stereochemical Revision of Laxaphycin B and Its Extension to Lyngbyacyclamide A, Organic Letters, vol.15, issue.15, pp.3898-901, 2013.
DOI : 10.1021/ol401645m

URL : https://hal.archives-ouvertes.fr/hal-00910980

D. Flot, T. Mairs, T. Giraud, M. Guijarro, M. Lesourd et al., The ID23-2 structural biology microfocus beamline at the ESRF, Journal of Synchrotron Radiation, vol.5, issue.1, pp.107-125, 2010.
DOI : 10.1107/S0909049509041168

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025444

D. De-sanctis, A. Beteva, H. Caserotto, F. Dobias, J. Gabadinho et al., ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering, Journal of Synchrotron Radiation, vol.5, issue.3, pp.455-61, 2012.
DOI : 10.1107/S0909049512009715

W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, Journal of Applied Crystallography, vol.26, issue.6, pp.795-800, 1993.
DOI : 10.1107/S0021889893005588

A. Mccoy, R. Grosse-kunstleve, P. Adams, M. Winn, L. Storoni et al., crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-74, 2007.
DOI : 10.1107/S0021889807021206

R. Read, Pushing the boundaries of molecular replacement with maximum likelihood, Acta Crystallogr D Biol Crystallogr. Epub, vol.5722, issue.09, pp.1373-82, 2001.

T. Terwilliger, R. Grosse-kunstleve, P. Afonine, N. Moriarty, P. Adams et al., Iterativebuild OMIT maps: map improvement by iterative model building and refinement without model bias
DOI : 10.1107/s0907444908004319

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2424225

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2158, 2004.
DOI : 10.1107/S0907444904019158

I. Ascone, E. Girard, P. Gourhant, P. Legrand, O. Roudenko et al., Proxima 1, a New Beamline on the Third Generation SR Source SOLEIL Combining PX and Single-Crystal BioXAS, AIP Conference Proceedings, p.60709, 2006.
DOI : 10.1063/1.2644688

E. Krissinel and K. Henrick, Inference of Macromolecular Assemblies from Crystalline State, Journal of Molecular Biology, vol.372, issue.3, pp.774-97, 2007.
DOI : 10.1016/j.jmb.2007.05.022

M. Petoukhov, D. Franke, A. V. Shkumatov, G. Tria, A. G. Kikhney et al., program package for small-angle scattering data analysis, Journal of Applied Crystallography, vol.36, issue.2, pp.342-50, 2012.
DOI : 10.1107/S0021889812007662/fs5015sup1.pdf

D. Franke and D. Svergun, shape determination in small-angle scattering, Journal of Applied Crystallography, vol.42, issue.2, pp.342-348, 2009.
DOI : 10.1107/S0021889809000338

V. V. Volkov and D. Svergun, shape determination in small-angle scattering, Journal of Applied Crystallography, vol.36, issue.3, pp.860-64, 2003.
DOI : 10.1107/S0021889803000268

W. Vranken, W. Boucher, T. Stevens, R. Fogh, A. Pajon et al., The CCPN data model for NMR spectroscopy: Development of a software pipeline, Proteins: Structure, Function, and Bioinformatics, vol.58, issue.4, pp.687-96, 2005.
DOI : 10.1002/prot.20449

A. Roy, A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction, Nature Protocols, vol.59, issue.4, pp.725-763, 2010.
DOI : 10.1038/nprot.2010.5

M. Nielsen, C. Lundegaard, O. Lund, and T. Petersen, CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles, Nucleic Acids Research, vol.38, issue.Web Server, pp.576-81, 2010.
DOI : 10.1093/nar/gkq535

URL : http://doi.org/10.1093/nar/gkq535

C. Combet, M. Jambon, G. Deleage, and C. Geourjon, Geno3D: automatic comparative molecular modelling of protein, Bioinformatics, vol.18, issue.1, pp.213-217, 2002.
DOI : 10.1093/bioinformatics/18.1.213

URL : https://hal.archives-ouvertes.fr/hal-00313011

A. Lobley, M. Sadowski, and D. Jones, pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination, Bioinformatics, vol.25, issue.14, pp.1761-1768, 2009.
DOI : 10.1093/bioinformatics/btp302

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/25/14/1761