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Some anthropogenic noise is now considered pollution, with evidence building that noise from human
activities such as transportation, construction and exploration can impact behaviour and physiology in a
broad range of taxa. However, relatively little research has considered the effects of repeated or chronic
noise; extended exposures may result in habituation or sensitisation, and thus changes in response. We
conducted a field-based experiment at Moorea Island to investigate how repeated exposure to playback
of motorboat noise affected a coral reef fish (Dascyllus trimaculatus). We found that juvenile
D. trimaculatus increased hiding behaviour during motorboat noise after two days of repeated exposure,
but no longer did so after one and two weeks of exposure. We also found that naïve individuals
responded to playback of motorboat noise with elevated ventilation rates, but that this response was
diminished after one and two weeks of repeated exposure. We found no strong evidence that baseline
blood cortisol levels, growth or body condition were affected by three weeks of repeated motorboat-
noise playback. Our study reveals the importance of considering how tolerance levels may change
over time, rather than simply extrapolating from results of short-term studies, if we are to make de-
cisions about regulation and mitigation.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Some anthropogenic noise is now considered a global pollutant.
As well as featuring in national and international legislation (e.g.
the European Commission Marine Strategy Framework Directive
and the United States National Environmental Policy Act),
mounting evidence shows that anthropogenic noise can impact
behaviour (e.g. vocal communication, anti-predator defence,
foraging) and physiology (e.g. ventilation rate, metabolic rate, heart
rate) in at least some species from a broad range of taxa (Shannon
et al., 2015; Morley et al., 2014; Slabbekoorn et al., 2010). However,
response variables in the majority of experimental studies are only
measured once and only after relatively short-term noise exposure
(e.g. (McLaughlin and Kunc, 2013; Simpson et al., 2015). There is
some evidence that on-going exposure to anthropogenic noise can
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impact animals (Barber et al., 2010; Crino et al., 2013; Wale et al.,
2013), yet there are few experimental studies that investigate
how responses may change over time (for an exception, see (Wale
et al., 2013)). This is an important consideration in the context of
regulation, because human disturbance of natural habitats is
becoming more frequent and the pervasive nature of anthropo-
genic noise means that animals are likely to be exposed multiple
times during their lifetime.

Research in other fields reveals that animal responses to various
stimuli can change over time with repeat exposures (Bejder et al.,
2009). Responses may be heightened (reduced tolerance), one
explanation for which could be sensitisation (Richardson et al.,
1995). For example, yellow-eyed penguins (Megadyptes antipodes)
from areas of greater human disturbance show higher baseline
corticosterone levels than those from less disturbed areas
(Ellenberg et al., 2007). Alternatively, responses could be attenu-
ated (increased tolerance), one explanation for which could be
habituation (Thorpe, 1963). For example, male white-crowned
sparrows (Zonotrichia leucophrys) in breeding pairs showed de-
creases in several behavioural responses (song and flight) with
repetition of playbacks of conspecifics (Petrinovich and Patterson,
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Schematic diagram (not to scale) showing the layout of the sites used for sound
playback and video recording, plus a photo of the cages at one site.
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1979). If animals continue to respond to stimuli, they could become
chronically stressed (Cyr and Romero, 2009), with potential
downstream effects on growth and condition (Anderson et al.,
2011). If an animal habituates fully to a stressor, baseline cortisol
concentration, behaviour and health will be the same as unstressed
animals (Cyr and Romero, 2009). Experimental data with repeat
measures from the same individuals over time are lacking in field
studies of anthropogenic noise, so whether animals are able to
habituate to this stressor is unknown.

We used a field-based experiment on a coral reef fish to inves-
tigate the effects of repeated exposure to playback of motorboat
noise over three weeks. Fish are socio-economically important, yet
many species are vulnerable to anthropogenic pressures such as
overfishing and ocean acidification (Harley et al., 2006; Simpson
et al., 2011). Moreover, wherever humans inhabit coastal waters,
including coral reefs, small boats provide a ubiquitous source of
anthropogenic disturbance, including generation of additional
noise (Whitfield and Becker, 2014). All fish detect sound, often
possessing specialised auditory apparatus, and are exposed to un-
derwater noise across the globe (Bleckmann, 2004; Popper, 2003).
There is increasing evidence that at least some fish species can be
affected by anthropogenic noise, including behavioural changes
such as foraging, nest caring and predator avoidance (e.g. (Bruintjes
and Radford, 2013; Picciulin et al., 2010; Simpson et al., 2015)),
physiological changes such as increases in plasma cortisol con-
centrations, oxygen consumption and ventilation (opercular beat
rate) (e.g. (Debusschere et al., 2016; Simpson et al., 2015; Wysocki
et al., 2006)), and fitness consequences (Simpson et al., 2016).
However, the majority of studies on the impacts of noise have
focused on short-term responses. The few that have conducted
longer term experiments have been conducted in tanks (Anderson
et al., 2011; Bruintjes and Radford, 2014; Davidson et al., 2009;
Filiciotto et al., 2013; Nedelec et al., 2015). Tanks offer certain
benefits, including greater control over environmental variables
such as extraneous noise, temperature and water quality, the
acoustics of small tanks mean that relevant sound exposure levels
are very difficult to measure and control (Parvelescu, 1967). How-
ever, field studies offer greater ecological relevance.

In this study, we exposed juvenile coral reef fish in their natural
habitat to playbacks of motorboat noise. Dascyllus trimaculatus is a
site-attached damselfish which is easily observed in shallowwaters
with high visibility (Bernardi et al., 2012). Juvenile D. trimaculatus
associate closely with anemones, and schools can be relocated
successfully to different anemones to create independent experi-
mental units. We relocated 24 schools of D. trimaculatus to anem-
ones that surrounded loudspeakers playing either motorboat noise
or ambient noise in the lagoon of Moorea, French Polynesia to
investigate whether: 1) there was a short-term response to
motorboat noise; 2) tolerance of motorboat noise changed over
several days of exposure; and 3) repeated exposure to motorboat
noise resulted in chronic stress. Specifically, we tested whether
hiding behaviour and ventilation rate responses to motorboat-
noise playback differed after repeat exposure. We predicted that
these responses would be heightened if fish tolerance to playbacks
decreased, while these responses would attenuate if tolerance
increased. We also measured fish size, condition and baseline
plasma cortisol concentrations to test the longer term conse-
quences of any change in tolerance to repeated playback of
motorboat noise.

2. Materials and methods

2.1. Ethical approval

Approval was granted from our institutional animal ethics
Please cite this article in press as: Nedelec, S.L., et al., Repeated exposure to
(2016), http://dx.doi.org/10.1016/j.envpol.2016.05.058
committees, le Centre National de la Recherche Scientifique (CNRS),
for sacrificing and subsequently dissecting fish (Permit Number:
006725). Dascyllus trimaculatus is not on the endangered species
list and no specific authorization was required from the French
Polynesian government for collection.
2.1.1. Experimental set-up
Work was conducted from the CRIOBE research station, Moorea,

French Polynesia. Juvenile D. trimaculatus (threespot dascyllus)
were collected using clove oil and hand nets from anemones
around the north coast of Moorea and introduced to one of 12
experimental anemones relocated to two sites on a natural sand
flat. The two sites were on a sand flat close to the research station,
with similar depth (1.3e1.8 m), water turbidity, prevailing currents,
and proximity to reef (>10 m) and nearest boat channel (>60 m).
Anemones were 20e40 cm in diameter and were attached to dead
coral which rested on the sand. Cages surrounding anemones to
exclude predators were 50 cm diameter, 1 m high cylinders made
from 6 mm-square metal mesh, fixed to the sandy bottom of the
lagoon flat using 1 m metal pegs hammered into the sand. Fig. 1
shows a schematic of the layout of the sites used.

Each anemone was 1 m from a loudspeaker (UW-30, frequency
response 0.1e10 kHz, University Sound, Columbus OH). Loud-
speakers were fixed to the sandy bottom facing upwards by a
custom-made mount pegged into the sand. Loudspeakers were
used to play one of two sound treatments (Ambient or Boat; as per
(Nedelec et al., 2014)). Original recordings for use in playback tracks
were as in (Nedelec et al., 2014). We made boat recordings during
the day (on 4/11/2010 and 5/11/10) at 2m depth in a deep bay in the
lagoon on the east coast of Moorea using a hydrophone (HiTech
HTI-96-MIN with inbuilt preamplifier; sensitivity 165 dB re 1 V/
mPa; frequency range 2 Hze30 kHz; High Tech Inc., Gulfport MS)
and a solid-state recorder (Edirol R-09HR 16-bit recorder; sampling
rate 44.1 kHz; Roland Systems Group, Bellingham WA). The
recorder was fully calibrated using pure sine wave signals gener-
ated in SAS Lab (Avisoft, Germany), played on an mp3 player,
measured in line with an oscilloscope. To reduce pseudoreplication
of playbacks, we used 36 recordings of two different boats (5 m
long aluminium outboard motorboats with 25 horse power Suzuki
engines, one boat used per recording) making passes of the hy-
drophone (boats started 50 m from the hydrophone and drove past
in a straight line for 100 m; passing the hydrophone at a closest
distance of 10 m), and 12 recordings of ambient noise.

Sound samples were combined and looped into 12 h long
noise increases tolerance in a coral reef fish, Environmental Pollution
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playbacks such that therewere two different replicate playbacks for
each treatment. Sound pressure levels (measured using the hy-
drophone set-up described above) and particle acceleration levels
(measured using an M30 accelerometer, sensitivity 0e3 kHz,
manufactured and calibrated by GeoSpectrum Technologies, Dart-
mouth, Canada; recorded on a laptop via a USB soundcard,
MAYA44, ESI Audiotechnik GmbH, Leonberg, Germany) of play-
backs was recorded and comparedwith recordings of real boats at a
nearby location in the lagoon (Figs. 2 and 3). Playbacks were
recorded at 1 m from the speaker, at the location of the experiment
with experimental apparatus in place. The two experimental sites
were 100 m apart and playbacks at one site could not be heard
above local ambient noise levels from the other (verified with
sound pressure and particle acceleration recordings). Sound travel
between the two sites may have been limited due to the sandy
bottom with occasional coral heads and coral rubble and the fact
that between the two sites there is a large area where the depth
reduces to ca. 40 cm, cutting off low frequencies.

All fish received ambient sound from the environment (e.g. from
the nearby reef), in addition to that included in the playback of
recordings taken from another location. Fish in the Boat treatment
also received boat-noise playback for 45 s every 5 min, totaling 144
boat passes per day between the hours of 06:00 and 18:00. Play-
backs played throughout the experiment during daylight hours so
that sound was already playing when fish were introduced and
Fig. 2. Spectrograms of noise types for sound pressure. Window length

Please cite this article in press as: Nedelec, S.L., et al., Repeated exposure to
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when they left cages.
D. trimaculatus took shelter in the anemone within seconds of

being introduced. Each anemone received a school of 12 fish; 10
fish with standard length 10e20 mm (‘focal fish’) and two fish with
standard length 35e45 mm (for aiding settlement and measuring
blood cortisol concentration). The smaller fish were small enough
to leave the cage, but the larger fish were not. Thus we included the
larger fish for two reasons: firstly because the smaller fish did not
leave the cage when the larger fish were present and secondly
because the smaller fish were too small to bleed for a blood cortisol
measurement. Fish on the same anemone were introduced on the
same day; fish on different anemones could be introduced on
different days. Allocation of fish to anemones was random within
treatment, and cages were filled in an alternating pattern between
treatments (Ambient, Boat, Ambient, Boat… etc.) to avoid temporal
bias between treatments. During a given experimental replicate,
each site was allocated to one of the two sound treatments; two
temporal replicates were performed with sound treatment
reversed between sites on the second occasion.

2.1.2. Hiding behaviour
A video camera (GoPro Hero 2) was placed on the top of each

cage to film down through an opening for 20min on the second day
of playback exposure (during the period of fourmotorboat passes in
the Boat treatment), between 15:00 and 18:00. We also filmed for
¼ sample rate ¼ 44.1 kHz, window ¼ Hamming, overlap ¼ 50%.

noise increases tolerance in a coral reef fish, Environmental Pollution



Fig. 3. Power spectral densities (PSD) of (a) sound pressure level and (b) monoaxial (horizontal axis) particle acceleration level of original recordings of motorboats and motorboat-
noise playbacks at experimental site along with ambient noise and ambient-noise playbacks. Window length ¼ 1024. Mean of five boat passes or 3 min ambient noise. Playback of
ambient noise matched local ambient noise relatively well in sound pressure. As the experiment was conducted on a sand flat, most ambient sound sources were not nearby,
particle acceleration ambient noise levels were thus lower as the particle motion component of sound drops off with distance from the sound source faster than the pressure
component. Playbacks were affected by near-field effects and speaker performance meaning some frequencies were louder and others quieter, but motorboats were louder than
ambient noise and motorboat-noise playbacks were louder than ambient-noise playbacks. Some recordings contained harmonic noise at 50 Hz intervals; this was an artefact of
recording via a laptop.
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10min after 1 week (7e9 days) and for 10min after 2 weeks (14e18
days) of playback exposure between 06:00 and 10:00 (we were
unable to film during the afternoon due to logistical constraints).
The first 5 min of each video recording were discarded for analysis
as preliminary observations revealed that behaviour stabilised
5 min after the start of the video (when schools were disturbed by
the presence of someone setting up the camera). Videos were
watched in a random order without sound by an observer that was
blind to experimental treatment. The same observer was used for
all videos. We focused on the 50 s prior to a motorboat pass (‘pre’),
the 45 s of the motorboat pass (‘during’) and the 50 s following a
motorboat pass (‘post’) in Boat replicates. Scan samples of fish
behaviour were performed every 10 s during each period. Scans in
matched periods were also made of Ambient replicates. In each
scan, each focal fish was recorded as hiding in the protection of the
anemone or not hiding. Fish were defined as hiding in the protec-
tion of the anemone if all or part of their body was within anemone
tentacles or if they were within one body length of the rim of the
anemone (the underside of the anemone where there are no ten-
tacles). In each video, the mean number of focal fish hiding in pre-,
during- or post-exposure periods were used for statistical analysis.
Since the mean number of fish hiding in each assessment period
was used for statistical analysis, the sample size was determined by
the number of schools.

2.1.3. Ventilation rate
Ventilation rate (measured as opercular beat rate; OBR) is a

recognised secondary indicator of stress (Barton, 2002), is a robust
measure allowing control for the baseline OBR of individual fish in a
matched design, is easily measured by an observer who is blind to
the acoustic experience of each fish, and has previously been
shown to be affected by anthropogenic noise (Bruintjes et al., 2016;
Purser et al., 2016; Simpson et al., 2015). Four randomly selected
focal fish were caught from each anemone after 1 week and 2
weeks of playback exposure between 6:00 and 9:00. Fish were
introduced one at a time to the experimental arena (a
20� 20� 15 cmplastic tub suspendedmid-water on the same sand
flat, 100 m from experimental cages), situated 1 m from a loud-
speaker. The associated loudspeaker playing one of two sound
treatments was placed 1 m away on the sandy bottom facing up-
wards. Motorboat-noise playbacks were composed of loops of the
loudest 2 s of motorboat passes with a 10 s ramp-up. Four replicate
Please cite this article in press as: Nedelec, S.L., et al., Repeated exposure to
(2016), http://dx.doi.org/10.1016/j.envpol.2016.05.058
playbacks of each sound treatment were used.
Fish were observed for 1 min settling time, followed by 1 min

during playback of ambient noise where OBR was counted to
establish a ‘baseline’, followed by 1 min during playback of either a
different ambient-noise track or motorboat-noise track while OBR
was counted. Fish were randomly allocated to short-term sound
treatment and the observer was blind to the long-term treatment
when possible (dependent on whether fish from both Boat and
Ambient schools were available on the same day; ca. 50% of the
time). After the experiment, fish were taken back to the CRIOBE
research station.

2.1.4. Size, mass and body condition
The standard length of each fish was measured to the nearest

1 mm using a ruler before entering the experiment. The standard
lengths of fish allocated randomly to experimental anemones did
not differ significantly between sound treatments (independent
samples t-test: t282.7¼ 0.07, p¼ 0.944). Fish that were taken back to
the research station after week 1 and week 2 were sacrificed using
an overdose of MS222 before standard length (measured in the
same way) and wet mass (measured using a balance, to the nearest
0.001 g). were measured. These were used to calculate condition
factor using the following formula:

K ¼ 105M
L3

where:
K is the Condition Factor, M is the wet mass of the fish in grams

(g) and L is the standard length of the fish in millimetres (mm)
(Nash et al., 2006).

2.1.5. Blood cortisol concentration
After 18e21 days (during which playbacks continued), the

remaining fish in each cage were caught and a blood sample was
taken to investigate the impact of long-term motorboat-noise
playback on baseline plasma cortisol levels. Fish were decapitated
and bled from the caudal vein within 0:22e4:23 min
(mean ¼ 1:40 min) of the start of capture attempts. Time to bleed
(independent samples t-test: t23.7 ¼ 0.05, p ¼ 0.960), standard
length of fish bled (t23.9 ¼ 0.53, p ¼ 0.599) and number of days fish
had spent in the cage (t23.9 ¼ 0.54, p ¼ 0.596) did not differ
noise increases tolerance in a coral reef fish, Environmental Pollution
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significantly between sound treatments. Blood was collected in a
heparinised 75 ml haematocrit capillary tube primed with 2 ml of
enzyme immunoassay (EIA) buffer (to assist the entry of small
amounts of blood into the capillary tube). After the sample was
taken, a further 18 ml of the EIA buffer was added to the capillary
tube to achieve the desired dilution. Samples were kept on ice until
they were centrifuged for 10 min at 10,000 rpm, to separate the
plasma.

Samples were obtained from 12 fish across eight different
anemones in the Ambient treatment and 14 fish across nine
different anemones in the Boat treatment. Plasma cortisol con-
centrations were measured using a Cortisol EIA Kit (No. 500360,
Cayman Chemicals, SPI BIO, France) as described in (Mills et al.,
2010) and validated for this species using a pool from 25 in-
dividuals using both parallel displacement of serially diluted
plasma to the standard curve and precision from intra- and inter-
assay variabilities.

With respect to validation of the cortisol assessment procedure,
the dose-response curves (11 dilution ratios: 1:3, 1:7, 1:20, 1:53,
1:143, and 1:387; as well as 1:11, 1:28, 1:69, 1:172, and 1:430) were
parallel to the cortisol EIA assay kit standards (ANCOVA of homo-
geneity of slopes: F1,46 ¼ 0.542, p ¼ 0.466; kit standards:
y ¼ �33.153 x e 28.014, R2 ¼ 0.98, N ¼ 25, p < 0.001; samples:
y ¼ �33.906 x e 8.385, R2 ¼ 0.96, N ¼ 22, p < 0.001). The dilution
factor for 50% of antibody bound determined from a regression
analysis was 1:53 (a dilution of 0.019). A high degree of accuracy
and precision was achieved with samples from D. trimaculatus us-
ing the cortisol kit, as determined from intra- (4.4%; n ¼ 14) and
inter-assay (7.6%; n ¼ 4) variability respectively.

2.1.6. Statistics
Where there were sufficient data, we used general linear mixed

effects models to test for impacts of motorboat-noise playback.
Linear mixed-effects models with normal errors were used to
analyse the effect of short and long-term playback exposure on the
change in OBR from baseline and the effect of long-term noise
treatment on baseline OBR, size, mass and condition. Number of
days exposure was included in the models as a fixed effect and
school was included as a random effect which was specific to
temporal replicate.

For mixed models, the minimal model was obtained by
sequential deletion of fixed effects and their interactions where
they were found to be non-significant. Significance was tested by
likelihood ratio model comparisons of the maximal model with the
nested model where an effect in question was dropped. Chi-
squared statistics and p-values for fixed effects were obtained by
likelihood ratio tests comparing the minimal model with a model
excluding the effect where it was included in theminimal model, or
including the effect where it was not. The degrees of freedom given
are the difference in degrees of freedom for the two models
compared and the degrees of freedom for the minimal model. All
potential interactions of fixed effects were examined and are only
presented where their exclusion from the model made the model
significantly worse at explaining the data at the level p < 0.10. In the
case where interaction terms were included in the best model,
planned contrasts were conducted using Markov Chain Monte
Carlo methods. Z tests were used for post-hoc tests where the
sample size was large (>20); t-tests were used where the sample
size was small (<20). The variance and standard deviation for the
random effect of school and the size of any effects with standard
error (se) are given.

Elsewhere, we used paired t-tests or Wilcoxon signed-ranks
tests on the mean per school (selected after checking relevant as-
sumptions of normality and heterogeneity of variances). To estab-
lish whether the noise of boat passes affected hiding behaviour, the
Please cite this article in press as: Nedelec, S.L., et al., Repeated exposure to
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mean number of fish hiding in schools was compared for
preeduring, duringepost and preepost comparisons in a repeated-
measures design (within-schools comparison). Mean cortisol con-
centration for each Boat school was compared with mean cortisol
concentrations in Ambient schools in an independent-measures
design (between-schools comparison).
3. Results

3.1. Hiding behaviour

On day 2, a significantly greater number of focal fish in Boat
schools were found hiding in the anemone during the 45 s period of
motorboat-noise playback comparedwith the 50 s period pre-noise
(paired t-test: t7¼ 2.38, p¼ 0.049). On average, 0.83 more fish were
found hiding during motorboat noise compared to pre-motorboat
noise (95% CIs: 0.01e1.66; Fig. 4). In the 50 s post-motorboat-
noise exposure, the number of fish hiding declined slightly but
was not significantly different to the number during motorboat
noise (t7 ¼ 0.63, p ¼ 0.546, mean difference ¼ 0.71, 95%
CIs ¼ �1.94e3.36). The post-exposure number of focal fish hiding
did not differ significantly from the pre-exposure number
(t7 ¼ 0.43, p ¼ 0.679, mean difference ¼ 0.11, 95%
CIs ¼ �0.52e0.76). There were no significant differences in the
number of fish hiding in the anemone between any pair of equal
time points in Ambient schools (N ¼ 5, t-test p-values > 0.1). Nor
were there significant differences in the number of fish hiding in
the anemone when comparing preeduring, duringepost and
preepost periods at weeks 1 and 2 (N Boat week 1¼9, N Boat week
2¼11, NAmbient week 1¼10, NAmbient week 2¼ 7, paired t-tests
or Wilcoxon signed ranks tests p-values > 0.1; Fig. 4).
3.2. Opercular beat rate

The interaction between long-term and short-term noise
exposure affected the change in OBR from baseline (LMM:
c2

3 ¼ 81.80, p < 0.001; long-term noise: c2
1 ¼ 6.84, p ¼ 0.009;

short-term noise: c2
1 ¼ 48.41, p < 0.001; school variance ¼ 27.57,

standard deviation¼ 5.25), with qualitatively the same result found
after 1 and 2 weeks of noise exposure (c2

1 ¼1.39, p¼ 0.239). While
short-term exposure to motorboat-noise playback resulted in a
significantly greater increase in OBR compared to ambient-noise
playback, that effect was significantly lessened by long-term
exposure to playback of motorboat noise (Table 1; Fig. 5).
3.3. Size, mass and body condition

Although there was a significant positive effect of days in the
cage (i.e. age), there was no significant effect of long-term noise
exposure on standard length (LMM: c2

1 ¼ 0.11, p ¼ 0.745; days in
cage: c2

1 ¼ 20.26, p < 0.001; school variance ¼ 0.71, standard
deviation ¼ 0.84), wet mass (c2

1 ¼ 0.16, p ¼ 0.694; days in cage:
c2

1 ¼ 15.79, p < 0.001; school variance ¼ 0.03, standard
deviation ¼ 0.16) or body condition (c2

1 ¼ 0.30, p ¼ 0.582; days in
cage: c2

1 ¼ 5.90, p ¼ 0.015; school variance ¼ 0.00, standard
deviation ¼ 0.06) (N Ambient ¼ 82; Boat ¼ 93).
3.4. Blood cortisol concentration

Long-term noise-exposure treatment had no significant effect
on the baseline cortisol concentration (independent samples t-test:
t15 ¼ 1.8, p ¼ 0.091; Fig. 6).
noise increases tolerance in a coral reef fish, Environmental Pollution



Fig. 4. Proportion of the total number of focal fish in the school hiding during three periods of playback (pre-, during and post-motorboat-noise playback periods; in Ambient
schools, ‘during’ refers to the matching time points in videos when Boat schools received motorboat-noise playbacks, when Ambient schools continued to receive ambient-noise
playback). Grey lines represent the mean proportion within schools; thick black lines represent means across all schools. a) Boat day 2; b) Boat week 1; c) Boat week 2; d) Ambient
day 2; e) Ambient week 1; f) Ambient week 2.

Table 1
Planned contrasts for post-hoc testing of the effect of the interaction between long- and short-term playbacks on opercular beat rate. A¼ Ambient, B¼ Boat. Significant results
are shown in bold. N Ambient:Ambient ¼ 39; Ambient:Boat ¼ 43; Boat:Ambient ¼ 43; Boat:Boat ¼ 45.

Long-term: Short-term treatment combination Effect size estimate Standard error of effect size estimate t value Degrees of freedom p

A:A�A:B 31.42 3.66 8.59 141 <0.001
A:A� B:B �21.72 5.07 �4.28 141 <0.001
A:B� B:B 19.84 4.27 4.65 141 <0.001
A:B� B:A 21.72 5.07 4.28 141 <0.001
B:B� B:A �9.69 3.52 �2.76 141 0.007
A:A� B:A �1.88 4.39 �0.43 141 0.668
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Fig. 5. Mean ± 1 se change in ventilation rate (opercular beat rate, OBR) from baseline
(mean baseline OBR ¼ 249) when fish that had been exposed to long-term ambient or
motorboat-noise playback were played a short-term ambient or motorboat-noise
track. Long-term: 1 or 2 weeks, Short-term: 1 min. Long-term Ambient Short-term
Ambient: N ¼ 40; Long-term Ambient Short-term Boat: N ¼ 43; Long-term Boat
Short-term Ambient: N ¼ 44; Long-term Boat Short-term Ambient N ¼ 45.

Fig. 6. Mean ± 1 se baseline plasma cortisol concentration in fish exposed to 18e21
days of either ambient- or motorboat-noise playback.
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4. Discussion

We found a behavioural and a physiological response to
motorboat-noise playback in the short term: after two days of
exposure, juvenile Dascyllus trimaculatus were more likely to hide
during the period of a motorboat-pass playback than in the period
immediately before, and naïve fish (those that had not experienced
motorboat-noise playback before) also showed an increased
ventilation rate (opercular beat rate, OBR) in response to noise in
the short term (1 min exposure). Our results concur with other
studies that have found short-term behavioural and physiological
effects of anthropogenic noise in fish (Bruintjes and Radford, 2013;
Buscaino et al., 2010; Nedelec et al., 2015; Picciulin et al., 2010;
Simpson et al., 2015; Williams et al., 2015). However, we also
found evidence for behavioural and physiological attenuation: after
1 week of motorboat-noise exposure, hiding responses were no
longer observed during motorboat passes in repeat measures of the
same fish, and OBR increased less in response to motorboat-noise
playback. Perhaps as a consequence, we found that motorboat-
noise playback did not cause chronic stress responses: size, mass,
condition and baseline cortisol levels were not significantly
different from ambient-noise exposed controls after up to 21 days.
We would expect these measures to be affect had habituation not
occurred (Cyr and Romero, 2009).

Typical interpretations of how increases in hiding behaviour and
Please cite this article in press as: Nedelec, S.L., et al., Repeated exposure to
(2016), http://dx.doi.org/10.1016/j.envpol.2016.05.058
OBR could impact fitness are that less time is available for foraging
and/or that the animal was exhibiting a stress response. Reduced
resource acquisition could in turn lead to reduced growth, body
condition and ultimately either starvation, reduced ability to
escape predators, or fewer or poorer quality offspring (e.g. Picciulin
et al., 2010). Stress responses are associated with increases in
cortisol which can have ‘detrimental effects on growth, sexual
maturation and reproduction, immunological function and sur-
vival’ (Dickens and Romero, 2013; Wysocki et al., 2006 and refer-
ences therein). However, our data show that after 1 week of
exposure, hiding and OBR responses are attenuated, calling into
question such extrapolations from short-term responses (see also
(Bejder et al., 2006)). Attenuated responses remained consistent
into the second week of noise exposure and were accompanied by
no significant differences in size, mass, condition or baseline
plasma cortisol concentration between fish exposed to ambient- or
motorboat-noise playback. Thus, the fish in our experiment did not
appear to be under chronic stress as a consequence of repeated
exposure to motorboat-noise playback.

Possible explanations for the increased tolerance that we
observed are hearing threshold shifts and habituation. While cur-
rent opinion is that measures made in the acoustic near field in the
lab are not easily translated to open-water conditions (Fay and
Popper, 2012), we designed our noise exposure so that sound
levels were raised from ambient conditions within the frequency
range that other damselfishes have been shown to hear (up to
1200 Hz (Myrberg and Spires, 1980), yet to be below the level likely
to cause temporary hearing loss based on the limited knowledge
we have from auditory abilities in other species (Amoser and
Ladich, 2003; Ramcharitar and Popper, 2004; Smith et al., 2004).
As we caged fish, and thus emigration of more sensitive individuals
could not explain the increased tolerance either, habituation is the
most likely explanation for our results. Habituation entails learning
by animals that a stimulus does not represent a threat; in order to
show habituation, the same individuals must be tested over time
and a diminished response must be observed (Bejder et al., 2009).
Habituation has previously been studied in other contexts (e.g. the
siphon withdrawal reflex to a jet of seawater wanes with repeat
stimulation in Aplysia (Carew and Kandel, 1973), and the mobbing
of predators by chaffinches (Fringilla coelebs) if the stimulus is
prolonged or repeated (Hinde,1954)). We provide the first evidence
of this kind from a field-based experimental manipulation
involving anthropogenic noise.

The regime of sound exposure in our experiment was highly
regular; one motorboat playback every 5 min during daylight
hours. Although areas of regular disturbance exist, in many cases
exposure to motorboat noise might be less regular. Nedelec et al.
(2015) showed that in Atlantic cod (Gadus morhua), chronic regu-
lar noise led to reduction in body condition when compared to
random noise; however different species may respond differently.
We also caged fish to exclude predators, which may have reduced
some potential impact. For instance, recent work has found that
predator avoidance behaviour in fish can be negatively impacted by
exposure to anthropogenic noise (Simpson et al., 2015, 2016), thus
there is the possibility that our experimental subjects were cogni-
tively impaired but the exclusion of predators protected them. Also,
stressors can permanently alter the stress-induced cortisol
response of coral reef fish (which we did not measure) and can
impact their response to other stressors (such as predation) (Mills
et al., 2015). Finally, while we do believe that all our evidence
points to fish becoming habituated to motorboat-noise playback, it
should be considered that habituation does not necessarily link
with better welfare or chances of survival. Fish that are habituated
to motorboat noise may be more likely to be exposed to predation
risk (from fishing) or exposure to disease (Bejder et al., 2009).
noise increases tolerance in a coral reef fish, Environmental Pollution
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Further work is therefore warranted, ideally examining the impact
of real-world noise sources on uncaged fish in natural conditions.
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