The role of ocean acidification in Emiliania huxleyi coccolith thinning in the Mediterranean Sea

Abstract : Ocean acidification is a result of the uptake of an-thropogenic CO 2 from the atmosphere into the ocean and has been identified as a major environmental and economic threat. The release of several thousands of petagrams of carbon over a few hundred years will have an overwhelming effect on surface ocean carbon reservoirs. The recorded and anticipated changes in seawater carbonate chemistry will presumably affect global oceanic carbonate production. Coccolithophores as the primary calcifying phytoplankton group, and especially Emiliania huxleyi as the most abundant species have shown a reduction of calcification at increased CO 2 concentrations for the majority of strains tested in culture experiments. A reduction of calcification is associated with a decrease in coccolith weight. However, the effect in monoclonal cultures is relatively small compared to the strong variability displayed in natural E. huxleyi communities , as these are a mix of genetically and sometimes morphologically distinct types. Average coccolith weight is likely influenced by the variability in seawater carbonate chemistry in different parts of the world's oceans and on glacial/interglacial time scales due to both physiological effects and morphotype selectivity. An effect of the ongoing ocean acidification on E. huxleyi calcification has so far not been documented in situ. Here, we analyze E. huxleyi coc-colith weight from the NW Mediterranean Sea in a 12-year sediment trap series, and surface sediment and sediment core samples using an automated recognition and analyzing software. Our findings clearly show (1) a continuous decrease in the average coccolith weight of E. huxleyi from 1993 to 2005, reaching levels below pre-industrial (Holocene) and industrial (20th century) values recorded in the sedimentary record and (2) seasonal variability in coccolith weight that is linked to the coccolithophore productivity. The observed long-term decrease in coccolith weight is most likely a result of the changes in the surface ocean carbonate system. Our results provide the first indications of an in situ impact of ocean acidification on coccolithophore weight in a natural E. huxleyi population, even in the highly alkaline Mediterranean Sea.
Complete list of metadatas

Cited literature [59 references]  Display  Hide  Download

https://hal-univ-perp.archives-ouvertes.fr/hal-01280556
Contributor : Olivier Savoyat <>
Submitted on : Monday, February 29, 2016 - 5:19:28 PM
Last modification on : Thursday, November 28, 2019 - 11:44:12 AM
Long-term archiving on: Monday, May 30, 2016 - 3:11:35 PM

File

bg-11-2857-2014.pdf
Publication funded by an institution

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

K.J.S. Meier, L Beaufort, S Heussner, P Ziveri. The role of ocean acidification in Emiliania huxleyi coccolith thinning in the Mediterranean Sea. Biogeosciences Discussions, European Geosciences Union, 2014, pp.2857-2869. ⟨10.5194/bg-11-2857-2014⟩. ⟨hal-01280556⟩

Share

Metrics

Record views

1238

Files downloads

393