Y. Juan, P. Gao, and J. Wang, A hybrid decision support system for sustainable office building renovation and energy performance improvement, Energy and Buildings, vol.42, issue.3, pp.290-297, 2010.
DOI : 10.1016/j.enbuild.2009.09.006

A. G. Entrop, H. J. Brouwers, and A. H. Reinders, Evaluation of energy performance indicators and financial aspects of energy saving techniques in residential real estate, Energy and Buildings, vol.42, issue.5, pp.618-629, 2010.
DOI : 10.1016/j.enbuild.2009.10.032

M. Ordenes, R. Lamberts, and S. Güths, Estimation of thermophysical properties using natural signal analysis with heat and moisture transfer model, Energy and Buildings, vol.41, issue.12, pp.1360-1367, 2009.
DOI : 10.1016/j.enbuild.2009.08.008

B. Yesilata and P. Turgut, A simple dynamic measurement technique for comparing thermal insulation performances of anisotropic building materials, Energy and Buildings, vol.39, issue.9, pp.1027-1034, 2007.
DOI : 10.1016/j.enbuild.2006.11.007

S. Brahim, Radiométrie photothermique sous excitation aléatoire : application à la mesure de propriétés thermophysiques, 2008.

J. L. Bodnar, S. Brahim, A. Boutemy, J. C. Cantone, and P. , Contrôle non destructif par radiométrie photothermique sous excitation aléatoire : principe et exemples d'application, 2005.

W. J. Parker, W. J. Jenkins, C. P. Butler, and G. L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, Journal of Applied Physics, vol.32, issue.9, pp.1679-1684, 1961.
DOI : 10.1063/1.1728417

A. Yezioro, B. Dong, and F. Leite, An applied artificial intelligence approach towards assessing building performance simulation tools, Energy and Buildings, vol.40, issue.4, pp.612-620, 2008.
DOI : 10.1016/j.enbuild.2007.04.014

B. Paris, J. Eynard, S. Grieu, T. Talbert, and M. Polit, Heating control schemes for energy management in buildings, Energy and Buildings, vol.42, issue.10, pp.1908-1917, 2010.
DOI : 10.1016/j.enbuild.2010.05.027

URL : https://hal.archives-ouvertes.fr/hal-00543272

H. Ohno, T. Suzuki, K. Aoki, A. Takahasi, and G. Sugimoto, Neural network control for automatic braking control system, Neural Networks, vol.7, issue.8, pp.1303-1312, 1994.
DOI : 10.1016/0893-6080(94)90011-6

K. P. Venugopal, A. S. Pandya, and R. Sudhakar, A recurrent neural network controller and learning algorithm for the on-line learning control of autonomous underwater vehicles, Neural Networks, vol.7, issue.5, pp.833-846, 1994.
DOI : 10.1016/0893-6080(94)90104-X

I. Flood and P. Christopholis, Modeling construction processes using artificial neural networks, Automation in Construction, vol.4, issue.4, pp.307-320, 1996.
DOI : 10.1016/0926-5805(95)00011-9

S. Grieu, A. Traoré, M. Polit, and J. Colprim, Prediction of parameters characterizing the state of a pollution removal biologic process, Engineering Applications of Artificial Intelligence, vol.18, issue.5, pp.559-573, 2005.
DOI : 10.1016/j.engappai.2004.11.008

URL : https://hal.archives-ouvertes.fr/hal-01273195

S. Grieu, S. , F. Thiéry, A. Traoré, T. P. Nguyen et al., KSOM and MLP neural networks for on-line estimating the efficiency of an activated sludge process, Chemical Engineering Journal, vol.116, issue.1, pp.1-11, 2006.
DOI : 10.1016/j.cej.2005.10.004

URL : https://hal.archives-ouvertes.fr/hal-01273185

W. J. Zhang, C. J. Bai, and G. D. Liu, Neural network modelling of ecosystems: A case study on cabbage growth system, Ecological Modelling, vol.201, pp.3-4, 2007.

Y. Zuo, Y. Wang, X. Liu, S. X. Yang, L. Huang et al., Neural network robust <mml:math altimg="si5.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>???</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> tracking control strategy for robot manipulators, Applied Mathematical Modelling, vol.34, issue.7, pp.1823-1838, 2010.
DOI : 10.1016/j.apm.2009.09.026

J. S. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics, vol.23, issue.3, pp.665-685, 1993.
DOI : 10.1109/21.256541

K. D. Maglic, A. Cezairliyan, and V. E. Peletsky, Compendium of thermophysical property measurement methods 1: survey of measurement techniques, 1984.

K. D. Maglic, A. Cezairliyan, and V. E. Peletsky, Compendium of thermophysical property measurement methods 2: recommended measurement techniques and practices, 1992.

C. Gervaise, Caractérisation thermique multi-échelles de revêtements réfractaires

J. L. Bodnar and S. Brahim, Contrôle non destructif par radiométrie photothermique aléatoire, Thermogram'03 conférence, 2003.

J. Auvray, Identification de processus, Techniques de l'ingénieur, 1994.

O. Faugeroux, Caractérisation thermophysique de revêtement de protection thermomécanique par méthode photothermique impulsionnelle, 2001.

R. Rosenblatt, The perceptron: a perceiving and recognizing automaton, 1957.

W. S. Mccullogh and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, vol.5, issue.4, pp.115-133, 1943.
DOI : 10.1007/BF02478259

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, vol.2, issue.5, pp.359-366, 1989.
DOI : 10.1016/0893-6080(89)90020-8

C. Charalambous, Conjugate gradient algorithm for efficient training of artificial neural networks, IEE Proceedings G Circuits, Devices and Systems, vol.139, issue.3, pp.301-310, 1992.
DOI : 10.1049/ip-g-2.1992.0050

H. Demuth and M. Beale, Neural Network Toolbox: For Use with Matlab, 1992.

D. Mandic and J. Chambers, Recurrent neural networks for prediction: learning algorithms, architectures and stability, Adaptative and Learning Systems for Signal Processing, Communications and Control Series, 2001.
DOI : 10.1002/047084535X

J. L. Elman, Finding Structure in Time, Cognitive Science, vol.49, issue.2, pp.179-211, 1990.
DOI : 10.1207/s15516709cog1402_1

M. T. Hagan and M. Menhaj, Training feedforward networks with the Marquardt algorithm, Training feedforward networks with the Marquardt algorithm, pp.989-993, 1994.
DOI : 10.1109/72.329697

C. T. Lin and C. S. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, 1996.

A. Abraham, Adaptation of Fuzzy Inference System Using Neural Learning, Fuzzy System Engineering: Theory and Practice, Studies in Fuzziness and Soft Computing, pp.53-83, 2005.

J. J. Buckley and Y. Hayashi, Fuzzy neural networks: a survey, Fuzzy Sets and Systems, pp.1-13, 1994.

J. J. Buckley and Y. Hayashi, Neural nets for fuzzy systems, Fuzzy Sets and Systems, vol.71, issue.3, pp.265-276, 1995.
DOI : 10.1016/0165-0114(94)00282-C

L. Zadeh, Fuzzy sets, Information and Control, vol.8, issue.3, pp.338-353, 1965.
DOI : 10.1016/S0019-9958(65)90241-X

L. Zadeh, Outline of a New Approach to the Analysis of Complex Systems and Decision Processes, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.1, pp.28-44, 1973.
DOI : 10.1109/TSMC.1973.5408575

T. Takagi and M. Sugeno, Derivation of fuzzy control rules from human operator's control actions, Proc. IFAC Symp. Fuzzy Inform., Knowledge Representation and Decision Analysis, pp.55-60, 1983.

C. C. Lee, Fuzzy logic in control systems: fuzzy logic controller. I, IEEE Transactions on Systems, Man, and Cybernetics, vol.20, issue.2, pp.404-418, 1990.
DOI : 10.1109/21.52551

C. Lee, Fuzzy logic in control systems: fuzzy logic controller. I, IEEE Transactions on Systems, Man, and Cybernetics, vol.20, issue.2, pp.419-435, 1990.
DOI : 10.1109/21.52551

J. S. Jang and C. T. Sun, Neuro-fuzzy modeling and control, Proceedings of the IEEE, vol.83, issue.3, pp.378-406, 1995.
DOI : 10.1109/5.364486

E. P. Klement, R. Mesiar, and E. Pap, Triangular norms, 2000.
DOI : 10.1007/978-94-015-9540-7

C. Schittenkopf, G. Deco, and W. Brauer, Two Strategies to Avoid Overfitting in Feedforward Networks, Neural Networks, vol.10, issue.3, pp.505-516, 1997.
DOI : 10.1016/S0893-6080(96)00086-X