Artificial intelligence tools and inverse methods for estimating the thermal diffusivity of building materials

Abstract : The actual European energy context highlights the building sector as one of the largest sectors of energy consumption. Consequently, the "Energy Performance of Buildings Directive", adopted in 2002 and focusing on energy use in buildings, requires all the EU members to enhance their building regulations and to introduce energy certification schemes, with the aim of both reducing energy consumption and improving energy efficiency. That is why carrying out an energy performance diagnosis is mandatory, notably when buying or selling properties. Indeed, invisible defaults, like, for example, non-emerging cracks or delaminations, could have a detrimental effect on insulating qualities. Esimaing in-situ thermo-physical properties allowing locating these defaults, the present work focuses on proposing new and efficient approaches based on the use of both artificial intelligence tools (artificial neural networks and neuro-fuzzy systems) and inverse methods for characterizing building materials i.e. for estimating their thermal diffusivity using thermograms obtained thanks to a non-destructive photothermal method.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal-univ-perp.archives-ouvertes.fr/hal-01273275
Contributeur : Julien Eynard <>
Soumis le : vendredi 12 février 2016 - 11:18:53
Dernière modification le : jeudi 25 janvier 2018 - 01:01:59
Document(s) archivé(s) le : vendredi 13 mai 2016 - 12:46:18

Fichier

Grieu2011.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Collections

Citation

Stéphane Grieu, Olivier Faugeroux, Adama Traoré, Bernard Claudet, Jean-Luc Bodnar. Artificial intelligence tools and inverse methods for estimating the thermal diffusivity of building materials. Energy and Buildings, Elsevier, 2011, 43 (2-3), pp.543-554. 〈http://www.sciencedirect.com/science/article/pii/S0378778810003725〉. 〈10.1016/j.enbuild.2010.10.020〉. 〈hal-01273275〉

Partager

Métriques

Consultations de la notice

98

Téléchargements de fichiers

162