R. Aspinall and D. Pearson, Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS, Journal of Environmental Management, vol.59, issue.4, pp.299-319, 2000.
DOI : 10.1006/jema.2000.0372

C. Charalambous, Conjugate gradient algorithm for efficient training of artificial neural networks, IEE Proceedings G Circuits, Devices and Systems, vol.139, issue.3, pp.301-310, 1992.
DOI : 10.1049/ip-g-2.1992.0050

W. Eckenfelder and J. Musterman, Activated sludge treatment of industrial wastewater, 1995.

J. L. Elman, Finding structures in time, Cognitive Sciences, pp.179-211, 1990.

S. Grieu, F. Thiery, A. Traoré, T. P. Nguyen, M. Barreau et al., KSOM and MLP neural networks for on-line estimating the efficiency of an activated sludge process, Chemical Engineering Journal, vol.116, issue.1, pp.1-11, 2006.
DOI : 10.1016/j.cej.2005.10.004

URL : https://hal.archives-ouvertes.fr/hal-01273185

S. Grieu, A. Traoré, M. Polit, and J. Colprim, Prediction of parameters characterizing the state of a pollution removal biologic process, Engineering Applications of Artificial Intelligence, vol.18, issue.5, pp.559-573, 2005.
DOI : 10.1016/j.engappai.2004.11.008

URL : https://hal.archives-ouvertes.fr/hal-01273195

M. M. Hamed, M. G. Khalafallah, and E. A. Hassanien, Prediction of wastewater treatment plant performance using artificial neural networks, Environmental Modelling & Software, vol.19, issue.10, pp.919-928, 2004.
DOI : 10.1016/j.envsoft.2003.10.005

W. Ludwig, P. Serrat, L. Cesmat, and J. Garcia-esteves, Evaluating the impact of the recent temperature increase on the hydrology of the T??t River (Southern France), Journal of Hydrology, vol.289, issue.1-4, pp.204-221, 2004.
DOI : 10.1016/j.jhydrol.2003.11.022

D. T. Pham and D. Karaboga, Training Elman and Jordan networks for system identification using genetic algorithms, Artificial Intelligence in Engineering, vol.13, issue.2, pp.107-117, 1999.
DOI : 10.1016/S0954-1810(98)00013-2

C. Schittenkopft, G. Deco, and W. Brauer, Two Strategies to Avoid Overfitting in Feedforward Networks, Neural Networks, vol.10, issue.3, pp.505-516, 1997.
DOI : 10.1016/S0893-6080(96)00086-X

S. Seker, E. Ayaz, and E. Türkcan, Elman's recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery, Engineering Applications of Artificial Intelligence, vol.16, issue.7-8, pp.647-656, 2003.
DOI : 10.1016/j.engappai.2003.10.004

P. Serrat, W. Ludwig, B. Navarro, and J. L. Blazi, Spatial and temporal variability of sediment fluxes from a coastal Mediterranean river: the Têt (France), Earth and Planetary Science, vol.333, pp.389-399, 2001.

M. Todorovic and P. Steduto, A GIS for irrigation management, Physics and Chemistry of the Earth, Parts A/B/C, vol.28, issue.4-5, pp.163-174, 2003.
DOI : 10.1016/S1474-7065(03)00023-8