V. , R. Charalambous, and C. , Conjugate gradient algorithm for efficient training of artificial neural networks, IEEE Proceedings, vol.139, pp.301-310, 1992.

P. Cibois, L'analyse factorielle : analyse en composantes principales et analyse des correspondances, 1983.

G. Durand and B. Jacquinot, Les boues industrielles : traitements et valorisation, 1995.

W. Eckenfelder and J. Musterman, Activated sludge treatment of industrial wastewater, 1995.

S. Grieu, A. Traoré, M. Polit, and J. Colprim, Estimating wastewater BOD 5 and ammonia using simple on-line operational data by applying neural networks -A case study over the simulation benchmark WWTP layout, First International NAISO Symposium on Information Technologies in Environmental Engineering, 2003.

M. T. Hagan and M. Menhaj, Training feedforward networks with the Marquardt algorithm, Training feedforward networks with the Marquardt algorithm, pp.989-993, 1994.
DOI : 10.1109/72.329697

J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the theory of neural computation, computation and neural systems series, 1991.

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, vol.2, issue.5, pp.359-366, 1989.
DOI : 10.1016/0893-6080(89)90020-8

A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review, ACM Computing Surveys, vol.31, issue.3, pp.264-323, 1999.
DOI : 10.1145/331499.331504

M. Moller, Efficient Training of Feed-Forward Neural Networks, DAIMI Report Series, vol.22, issue.464, 1993.
DOI : 10.7146/dpb.v22i464.6937

G. Philippeau, Comment interpréter les résultats d'une analyse en composantes principales, 1986.

R. Rosenblatt, The Perceptron : a Perceiving and Recognizing Automaton, 1957.

C. Schittenkopf, G. Deco, and W. Brauer, Two Strategies to Avoid Overfitting in Feedforward Networks, Neural Networks, vol.10, issue.3, pp.505-516, 1997.
DOI : 10.1016/S0893-6080(96)00086-X