Prediction of parameters characterizing the state of a pollution removal biologic process

Abstract : This work is devoted to the prediction, based on neural networks, of physicochemical parameters impossible to measure on-line. These parameters-the Chemical Oxygen Demand (COD) and the ammonia NH 4-characterize the organic matter and nitrogen removal biological process carried out at the Saint Cyprien WWTP (France). Their knowledge make it possible to estimate the process quality and efficiency. First, the data are treated by K-Means clustering then by principal components analysis in order to optimize the Multi-Level Perceptron (MLP) learning phase. K-Means clustering makes it possible to highlight different operations within the Saint Cyprien treatment plant. The Principal Components Analysis (PCA) is used to eliminate redundancies and synthesizes the information expressed by a data set. With respect to the neural network used, these techniques facilitate the pollution removal process understanding and the identification of existing relations between the predictive variables and the variables to be predicted.
Type de document :
Article dans une revue
Engineering Applications of Artificial Intelligence, Elsevier, 2005, 18 (5), pp.559-573. 〈http://www.sciencedirect.com/science/article/pii/S0952197604001794〉. 〈10.1016/j.engappai.2004.11.008〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal-univ-perp.archives-ouvertes.fr/hal-01273195
Contributeur : Julien Eynard <>
Soumis le : vendredi 12 février 2016 - 10:03:10
Dernière modification le : lundi 21 mars 2016 - 17:29:45
Document(s) archivé(s) le : vendredi 13 mai 2016 - 10:06:13

Fichier

Grieu2005.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Stéphane Grieu, Adama Traoré, Monique Polit, Jesús Colprim. Prediction of parameters characterizing the state of a pollution removal biologic process. Engineering Applications of Artificial Intelligence, Elsevier, 2005, 18 (5), pp.559-573. 〈http://www.sciencedirect.com/science/article/pii/S0952197604001794〉. 〈10.1016/j.engappai.2004.11.008〉. 〈hal-01273195〉

Partager

Métriques

Consultations de la notice

74

Téléchargements de fichiers

80