. C. Cha and . Charalambous, Conjugate gradient algorithm for efficient training of artificial neural networks, IEEE Proceedings, vol.139, pp.301-310, 1992.

. B. Das, G. Dasgupta, and . Schnitger, The power of approximating: a comparison of activation functions, Advances in Neural Networks Information Processing Systems, pp.615-622, 1993.

. H. Dem, M. Demuth, and . Beale, Neural network toolbox, for use with MATLABTM User's Guide Version 4, 2000.

. W. Eck, J. Eckenfelder, and . Musterman, Activated sludge treatment of industrial wastewater, 1995.

. S. Gri, A. Grieu, M. Traoré, and . Polit, Fault detection in a wastewater treatment plant, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597), pp.399-402, 2001.
DOI : 10.1109/ETFA.2001.996394

. S. Gri, A. Grieu, M. Traoré, J. Polit, and . Colprim, Neural networks for estimating wastewater BOD5 and ammonia from simple on-line operational data, IEEE CESA, 2003.

. S. Gri, A. Grieu, M. Traoré, J. Polit, and . Colprim, Prediction of parameters characterizing the state of a pollution removal biologic process, Engineering Applications of Artificial Intelligence, vol.18, issue.5, pp.559-573, 2005.
DOI : 10.1016/j.engappai.2004.11.008

. M. Hag, M. Hagan, and . Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, vol.5, pp.989-993, 1994.

. Hassanien, Prediction of wastewater treatment plant performance using artificial neural networks", Environmental Modelling & Software, 2004.

M. Henze, C. P. Grady-jr, W. Gujer, G. V. Marais, and T. Matsuto, Activated Sludge Model No, IAWQ Scientific and Technical Report, issue.1 1, 1986.

. J. Her, A. Hertz, R. G. Krogh, and . Palmer, Introduction to the theory of neural computation, computation and neural systems series, 1991.

. Bhamidimarri, Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis, Water Research, vol.37, pp.1608-1618, 2003.

. K. Hor, M. Hornik, H. Stinchcombe, . K. White-]-a, R. C. Jain et al., Multilayer Feedforward Networks are Universal ApproximationAlgorithms for clustering dataData clustering: a review, Neural Networks ACM Computing Surveys, vol.2, issue.31, pp.359-366, 1988.

. W. Mcc, W. Mccullogh, and . Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. of Math. Biophysics, vol.5, pp.115-133, 1943.

. M. Mol and . Moller, Efficient training of feed-forward neural networks, 1993.

. R. Ros and . Rosenblatt, The perceptron: a perceiving and recognizing automaton, 1957.

. C. Sch, G. Schittenkopft, W. Deco, and . Brauer, Two strategies to avoid overfitting in feedforward networks, Neural Networks, vol.10, pp.505-516, 1997.