D. Coles and L. J. Frewer, Nanotechnology applied to European food production ??? A review of ethical and regulatory issues, Trends in Food Science & Technology, vol.34, issue.1, pp.32-43, 2013.
DOI : 10.1016/j.tifs.2013.08.006

C. Peng, Z. Li, Y. Zhu, W. Chen, Y. Yuan et al., Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes, Biosensors and Bioelectronics, vol.24, issue.12, pp.3657-3662, 2009.
DOI : 10.1016/j.bios.2009.05.031

Y. Piao, F. Liu, and T. S. Seo, A Novel Molecular Beacon Bearing a Graphite Nanoparticle as a Nanoquencher for In situ mRNA Detection in Cancer Cells, ACS Applied Materials & Interfaces, vol.4, issue.12, pp.6785-6789, 2012.
DOI : 10.1021/am301976r

K. L. Hamner and M. M. Maye, Thermal Aggregation Properties of Nanoparticles Modified with Temperature Sensitive Copolymers, Langmuir, vol.29, issue.49, pp.15217-15223
DOI : 10.1021/la4037887

C. Jianrong, M. Yuqing, H. Nongyue, W. Xiaohua, and L. Sijiao, Nanotechnology and biosensors, Biotechnology Advances, vol.22, issue.7, pp.505-518, 2004.
DOI : 10.1016/j.biotechadv.2004.03.004

J. Liu, Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications, Physical Chemistry Chemical Physics, vol.48, issue.30, pp.10485-10496, 2012.
DOI : 10.1039/c2cp41186e

Y. Cui, Q. Wei, H. Park, and C. M. Leiber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, pp.1289-1292, 2001.
DOI : 10.1126/science.1062711

H. Chang, Y. Yuan, N. Shi, and Y. Guan, Electrochemical DNA Biosensor Based on Conducting Polyaniline Nanotube Array, Analytical Chemistry, vol.79, issue.13, pp.5111-5115, 2007.
DOI : 10.1021/ac070639m

M. V. Yigit, L. Zhu, M. A. Ifediba, Y. Zhang, K. Carr et al., Noninvasive MRI-SERS Imaging in Living Mice Using an Innately Bimodal Nanomaterial, Medarova, Z. Noninvasive MRI-SERS Imaging in Living Mice Using an Innately Bimodal Nanomaterial, pp.1056-1066, 2010.
DOI : 10.1021/nn102587h

Y. Xianyu, J. Sun, Y. Li, Y. Tian, Z. Wang et al., An ultrasensitive, non-enzymatic glucose assay via gold nanorod-assisted generation of silver nanoparticles, Nanoscale, vol.42, issue.14, pp.6303-6306, 2013.
DOI : 10.1039/c3nr01697h

G. K. Mishra, A. Sharma, K. Deshpande, and S. Bhand, Flow Injection Analysis Biosensor for Urea Analysis in Urine Using Enzyme Thermistor, Applied Biochemistry and Biotechnology, vol.78, issue.5, pp.998-1009, 2014.
DOI : 10.1007/s12010-014-0985-0

L. Barthelmebs, A. Hayat, A. W. Limiadi, J. L. Marty, and T. Noguer, Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles, Sensors and Actuators B: Chemical, vol.156, issue.2, pp.932-937, 2011.
DOI : 10.1016/j.snb.2011.03.008

B. Kim, I. H. Jung, M. Kang, H. K. Shim, and H. Woo, Cationic Conjugated Polyelectrolytes-Triggered Conformational Change of Molecular Beacon Aptamer for Highly Sensitive and Selective Potassium Ion Detection, Journal of the American Chemical Society, vol.134, issue.6, pp.2012-3133
DOI : 10.1021/ja210360v

V. C. Ozalp, G. Bayramoglu, Z. Erdem, and M. Y. Arica, Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core???shell type magnetic separation, Analytica Chimica Acta, vol.853, pp.533-540, 2015.
DOI : 10.1016/j.aca.2014.10.010

W. B. Shim, H. Mun, H. A. Joung, J. A. Ofori, D. H. Chung et al., Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples, Food Control, vol.36, issue.1, pp.30-35, 2014.
DOI : 10.1016/j.foodcont.2013.07.042

W. Jeon, S. Lee, D. H. Manjunatha, and C. Ban, A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles, Analytical Biochemistry, vol.439, issue.1, pp.11-16, 2013.
DOI : 10.1016/j.ab.2013.03.032

J. Lakowicz, Principle of Fluorescence Spectroscopy, 1999.
DOI : 10.1007/978-0-387-46312-4

L. Sheng, J. Ren, Y. Miao, J. Wang, and E. Wang, PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer, Biosensors and Bioelectronics, vol.26, issue.8, pp.3494-3499, 2011.
DOI : 10.1016/j.bios.2011.01.032

W. Wu, H. Hu, F. Li, L. Wang, J. Gao et al., A graphene oxide-based nano-beacon for DNA phosphorylation analysis, Chem. Commun., vol.130, issue.4, pp.1201-1203, 2011.
DOI : 10.1039/C0CC04312E

H. Chang, L. Tang, Y. Wang, J. Jiang, and J. Li, Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection, Analytical Chemistry, vol.82, issue.6, pp.2341-2346, 2010.
DOI : 10.1021/ac9025384

R. Yang, Z. Tang, J. Yan, H. Kang, Y. Kim et al., Noncovalent Assembly of Carbon Nanotubes and Single-Stranded DNA: An Effective Sensing Platform for Probing Biomolecular Interactions, Analytical Chemistry, vol.80, issue.19, pp.7408-7413, 2008.
DOI : 10.1021/ac801118p

H. Li, Y. Zhang, L. Wang, J. Tian, and X. Sun, Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform, Chem. Commun., vol.10, issue.3, pp.961-963, 2011.
DOI : 10.1039/C0CC04326E

J. Liu, Z. Guan, Z. Lv, X. Jiang, S. Yang et al., Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle, Biosensors and Bioelectronics, vol.52, pp.265-270, 2014.
DOI : 10.1016/j.bios.2013.08.059

Z. S. Wu, J. H. Jiang, L. Fu, G. L. Shen, and R. Q. Yu, Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles, Analytical Biochemistry, vol.353, issue.1, pp.22-29, 2006.
DOI : 10.1016/j.ab.2006.01.018

F. Gao, P. Cui, X. Chen, Q. Ye, M. Li et al., A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles, The Analyst, vol.82, issue.19, pp.3973-3980, 2011.
DOI : 10.1039/c1an15287d

P. C. Ray, G. K. Darbha, A. Ray, J. Walkar, and W. Hardy, Gold Nanoparticle Based FRET for DNA Detection, Plasmonics, vol.204, issue.4, pp.173-183, 2007.
DOI : 10.1007/s11468-007-9036-9

X. Zhang, F. Wang, B. Liu, E. Y. Kelly, M. R. Servos et al., Adsorption of DNA Oligonucleotides by Titanium Dioxide Nanoparticles, Langmuir, vol.30, issue.3, pp.839-845, 2014.
DOI : 10.1021/la404633p

M. Shim, N. Kam, R. Chen, Y. Li, and H. Dai, Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition, Nano Letters, vol.2, issue.4, pp.285-288, 2002.
DOI : 10.1021/nl015692j

J. W. Seo, H. Chung, M. Y. Kim, J. Lee, I. H. Choi et al., Development of Water-Soluble Single-Crystalline TiO2 Nanoparticles for Photocatalytic Cancer-Cell Treatment, Small, vol.75, issue.5, pp.850-853, 2007.
DOI : 10.1002/smll.200600488

H. P. Wu, T. L. Cheng, and W. L. Tseng, Nanoparticles for Selective Detection of Dopamine, Levodopa, Adrenaline, and Catechol Based on Fluorescence Quenching, Langmuir, vol.23, issue.14, pp.7880-7885, 2007.
DOI : 10.1021/la700555y

H. Li, T. Y. Ma, D. M. Kong, and Z. Yuanb, Mesoporous phosphonate???TiO2 nanoparticles for simultaneous bioresponsive sensing and controlled drug release, The Analyst, vol.122, issue.4, pp.1084-1090, 2013.
DOI : 10.1039/c2an36631b

Z. Guo, J. Ren, J. Wang, and E. Wang, Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A, Talanta, vol.85, issue.5, pp.2517-2521, 2011.
DOI : 10.1016/j.talanta.2011.08.015

Y. Wei, J. Zhang, X. Wang, and Y. Duan, Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A, Biosensors and Bioelectronics, vol.65, pp.16-22, 2015.
DOI : 10.1016/j.bios.2014.09.100

J. Zhang, X. Zhang, G. Yang, J. Chen, and S. Wang, A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of Ochratoxin A in wheat, Biosensors and Bioelectronics, vol.41, pp.704-709, 2013.
DOI : 10.1016/j.bios.2012.09.053

J. Chen, J. Fang, J. Liu, and L. Zeng, A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer, Food Control, vol.25, issue.2, pp.555-560, 2012.
DOI : 10.1016/j.foodcont.2011.11.039

C. Yang, Y. Wang, J. L. Marty, and X. Yang, Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator, Biosensors and Bioelectronics, vol.26, issue.5, pp.2724-2727, 2011.
DOI : 10.1016/j.bios.2010.09.032

J. Moser and M. Graetzel, Photosensitized electron injection in colloidal semiconductors, Journal of the American Chemical Society, vol.106, issue.22, pp.6557-6564, 1984.
DOI : 10.1021/ja00334a017

C. Y. Wang, C. Y. Liu, Y. Wang, and T. Shen, Spectral Characteristics and Photosensitization Effect on TiO2of Fluorescein in AOT Reversed Micelles, Journal of Colloid and Interface Science, vol.197, issue.1, pp.126-132, 1998.
DOI : 10.1006/jcis.1997.5235

A. Kathiravan and R. Renganathan, Photoinduced interactions between colloidal TiO2 nanoparticles and calf thymus-DNA, Polyhedron, vol.28, issue.7, pp.1374-1378, 2009.
DOI : 10.1016/j.poly.2009.02.040

B. P. Nelson, R. Candals, R. M. Corn, and M. A. Anderson, Films by Potential-Determining and Specifically Adsorbed Ions, Langmuir, vol.16, issue.15, pp.6094-6101, 2000.
DOI : 10.1021/la9911584

T. Amano, T. Toyooka, and Y. Ibuki, Preparation of DNA-adsorbed TiO2 particles ??? Augmentation of performance for environmental purification by increasing DNA adsorption by external pH regulation, Science of The Total Environment, vol.408, issue.3, pp.480-485, 2010.
DOI : 10.1016/j.scitotenv.2009.10.037

J. A. Cruz-aguado and G. Penner, Determination of Ochratoxin A with a DNA Aptamer, Journal of Agricultural and Food Chemistry, vol.56, issue.22, pp.8853-8855, 2008.
DOI : 10.1021/jf801957h

M. Balcioglu, M. Rana, N. Robertson, and M. V. Yigit, Nanostructures, ACS Applied Materials & Interfaces, vol.6, issue.15, pp.12100-12110, 2014.
DOI : 10.1021/am503553h