G. Bagni, D. Osella, E. Sturchio, and M. Mascini, Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies, Analytica Chimica Acta, vol.573, issue.574, pp.573-574, 2006.
DOI : 10.1016/j.aca.2006.03.085

K. Balasubramanian and M. Burghard, Biosensors based on carbon nanotubes, Analytical and Bioanalytical Chemistry, vol.21, issue.3, pp.452-468, 2006.
DOI : 10.1007/s00216-006-0314-8

D. A. Boaru, N. Dragos, and K. Schirmer, Microcystin-LR induced cellular effects in mammalian and fish primary hepatocyte cultures and cell lines: A comparative study, Toxicology, vol.218, issue.2-3, pp.134-148, 2006.
DOI : 10.1016/j.tox.2005.10.005

M. Campas, D. Szydlowska, M. Trojanowicz, and J. L. Marty, Towards the protein phosphatase-based biosensor for microcystin detection, Biosensors and Bioelectronics, vol.20, issue.8, pp.1520-1530, 2005.
DOI : 10.1016/j.bios.2004.06.002

M. Campas, D. Szydlowska, M. Trojanowicz, and J. L. Marty, Enzyme inhibition-based biosensor for the electrochemical detection of microcystins in natural blooms of cyanobacteria, Talanta, vol.72, issue.1, pp.179-186, 2007.
DOI : 10.1016/j.talanta.2006.10.012

M. Campas and J. Marty, Highly sensitive amperometric immunosensors for microcystin detection in algae, Biosensors and Bioelectronics, vol.22, issue.6, pp.1034-1040, 2007.
DOI : 10.1016/j.bios.2006.04.025

M. Campas, D. Garibo, and B. Prieto-simon, Novel nanobiotechnological concepts in electrochemical biosensors for the analysis of toxins, The Analyst, vol.43, issue.21, pp.1055-1067, 2012.
DOI : 10.1039/c2an15736e

M. Campas, M. G. Olteanu, and J. Marty, Enzymatic recycling for signal amplification: Improving microcystin detection with biosensors, Sensors and Actuators B: Chemical, vol.129, issue.1, pp.263-267, 2008.
DOI : 10.1016/j.snb.2007.08.009

M. W. Chong, K. D. Gu, P. K. Lam, M. Yang, and W. F. Fong, Study on the cytotoxicity of microcystin-LR on cultured cells, Chemosphere, vol.41, issue.1-2, pp.143-147, 2000.
DOI : 10.1016/S0045-6535(99)00402-6

G. A. Codd, Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control, Ecological Engineering, vol.16, issue.1, pp.51-60, 2000.
DOI : 10.1016/S0925-8574(00)00089-6

O. I. Covaci, A. Sassolas, G. A. Alonso, R. Munoz, G. L. Radu et al., Highly sensitive detection and discrimination of LR and YR microcystins based on protein phosphatases and an artificial neural network, Analytical and Bioanalytical Chemistry, vol.74, issue.15, pp.711-720, 2012.
DOI : 10.1007/s00216-012-6092-6

R. M. Dawson, the toxicology of microcystins, Toxicon, vol.36, issue.7, pp.953-962, 1998.
DOI : 10.1016/S0041-0101(97)00102-5

A. D. Ellington and J. W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature, vol.346, issue.6287, pp.818-822, 1990.
DOI : 10.1038/346818a0

F. Ricci, G. Adometto, and G. Palleschi, A review of experimental aspects of electrochemical immunosensors, Electrochimica Acta, vol.84, 2012.
DOI : 10.1016/j.electacta.2012.06.033

N. J. Ronkanein, H. B. Halsall, and W. R. Heineman, Electrochemical biosensors, Chemical Society Reviews, vol.61, issue.4, pp.1747-1763, 2010.
DOI : 10.1039/b714449k

L. N. Sangolkar, S. S. Maske, and T. Chakrabart, Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria, Water Research, vol.40, issue.19, pp.3485-3496, 2006.
DOI : 10.1016/j.watres.2006.08.010

A. Sassolas, L. J. Blum, and B. D. Leca-bouvier, Electrochemical Aptasensors, Electroanalysis, vol.108, issue.11, pp.1237-1250, 2008.
DOI : 10.1002/elan.200804554

URL : https://hal.archives-ouvertes.fr/hal-00445436

A. Sassolas, L. J. Blum, and B. D. Leca-bouvier, Optical detection systems using immobilized aptamers, Biosensors and Bioelectronics, vol.26, issue.9, pp.3725-3736, 2011.
DOI : 10.1016/j.bios.2011.02.031

URL : https://hal.archives-ouvertes.fr/hal-00631958

A. Sassolas, L. J. Blum, and B. D. Leca-bouvier, Immobilization strategies to develop enzymatic biosensors, Biotechnology Advances, vol.30, issue.3, pp.489-511, 2012.
DOI : 10.1016/j.biotechadv.2011.09.003

URL : https://hal.archives-ouvertes.fr/hal-00631944

A. Sassolas, G. Catanante, D. Fournier, and J. L. Marty, Development of a colorimetric inhibition assay for microcystin-LR detection: Comparison of the sensitivity of different protein phosphatases, Talanta, vol.85, issue.5, pp.2498-2503, 2011.
DOI : 10.1016/j.talanta.2011.07.101

A. Sassolas, B. D. Leca-bouvier, and J. J. Blum, DNA Biosensors and Microarrays, Chemical Reviews, vol.108, issue.1, pp.109-139, 2008.
DOI : 10.1021/cr0684467

URL : https://hal.archives-ouvertes.fr/hal-00288312

S. Singh, Recent trends in development of biosensors for detection of microcystin, Toxicon, vol.60, issue.5, pp.878-894, 2012.
DOI : 10.1016/j.toxicon.2012.06.005

R. Stoltenburg, C. Reinemann, and B. Strehlitz, SELEX???A (r)evolutionary method to generate high-affinity nucleic acid ligands, Biomolecular Engineering, vol.24, issue.4, pp.381-403, 2007.
DOI : 10.1016/j.bioeng.2007.06.001

X. Sun, H. Shi, H. Wang, L. Xiao, and L. Li, A Simple, Highly Sensitive, and Label-Free Impedimetric Immunosensor for Detection of Microcystin-LR in Water, Analytical Letters, vol.43, issue.4, pp.533-544, 2010.
DOI : 10.1016/j.talanta.2006.05.081

D. Szydlowska, M. Campas, J. L. Marty, and M. Trojanowicz, Catechol monophosphate as a new substrate for screen-printed amperometric biosensors with immobilized phosphatases, Sensors and Actuators B: Chemical, vol.113, issue.2, pp.787-796, 2006.
DOI : 10.1016/j.snb.2005.07.041

D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, Electrochemical biosensors: recommended defnctons and classifcaton, Pure Appl. Chem, issue.12, pp.71-2333, 1999.

P. Tong, S. Tang, Y. He, Y. Shao, L. Zhang et al., Label-free immunosensing of microcystin-LR using a gold electrode modified with gold nanoparticles, Microchimica Acta, vol.24, issue.3-4, pp.299-305, 2011.
DOI : 10.1007/s00604-011-0557-8

M. Trojanowicz, Analytical applications of carbon nanotubes: a review, TrAC Trends in Analytical Chemistry, vol.25, issue.5, pp.480-489, 2006.
DOI : 10.1016/j.trac.2005.11.008

J. Wang, G. Rivas, X. Cai, E. Palecek, P. Nielsen et al., DNA electrochemical biosensors for environmental monitoring. A review, Analytica Chimica Acta, vol.347, issue.1-2, pp.1-8, 1997.
DOI : 10.1016/S0003-2670(96)00598-3

J. Wang, Nanomaterial-based electrochemical biosensors, The Analyst, vol.50, issue.4, pp.421-426, 2005.
DOI : 10.1039/b414248a

J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis, vol.15, issue.1, pp.7-14, 2005.
DOI : 10.1002/elan.200403113

L. Wang, . W. Chen, . D. Xu, . B. Shim, . Y. Zhu et al., Simple, Rapid, Sensitive, and Versatile SWNT???Paper Sensor for Environmental Toxin Detection Competitive with ELISA, Nano Letters, vol.9, issue.12, pp.4147-4152, 2009.
DOI : 10.1021/nl902368r

L. Wang, W. Ma, L. Xu, W. Chen, Y. Zhu et al., Nanoparticle-based environmental sensors, Materials Science and Engineering: R: Reports, vol.70, issue.3-6, pp.265-274, 2010.
DOI : 10.1016/j.mser.2010.06.012

F. Yan, A. Erdem, B. Meric, K. Kerman, M. Ozsoz et al., Electrochemical DNA biosensor for the detection of specific gene related to Microcystis species, Electrochemistry Communications, vol.3, issue.5, pp.224-228, 2001.
DOI : 10.1016/S1388-2481(01)00149-7

J. Zhang, J. Lei, C. Xu, L. Ding, and H. Ju, Carbon Nanohorn Sensitized Electrochemical Immunosensor for Rapid Detection of Microcystin-LR, Analytical Chemistry, vol.82, issue.3, pp.1117-1122, 2010.
DOI : 10.1021/ac902914r