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ABSTRACT
Crustose coralline algae (CCA) are major benthic calcifiers that play crucial roles in
marine ecosystems, particularly coral reefs. Over the past two decades, epizootics
have been reported for several CCA species on coral reefs worldwide. However, their
causes remain often unknown in part because few studies have investigated CCA
pathologies at a microscopic scale. We studied the cellular changes associated with
two syndromes: Coralline White Band Syndrome (CWBS) and Coralline White
Patch Disease (CWPD) from samples collected in Curaçao, southern Caribbean.
Healthy-looking tissue of diseased CCA did not differ from healthy tissue of healthy
CCA. In diseased tissues of both pathologies, the three characteristic cell layers of
CCA revealed cells completely depleted of protoplasmic content, but presenting an
intact cell wall. In addition, CWBS showed a transition area between healthy and
diseased tissues consisting of cells partially deprived of protoplasmic material, most
likely corresponding to the white band characterizing the disease at the macroscopic
level. This transition area was absent in CWPD. Regrowth at the lesion boundary
were sometimes observed in both syndromes. Tissues of both healthy and diseased
CCA were colonised by diverse boring organisms. Fungal infections associated with
the diseased cells were not seen. However, other bioeroders were more abundant
in diseased vs healthy CCA and in diseased vs healthy-looking tissues of diseased
CCA. Although their role in the pathogenesis is unclear, this suggests that disease
increases CCA susceptibility to bioerosion. Further investigations using an integrated
approach are needed to carry out the complete diagnosis of these diseases.

Subjects Ecology, Marine Biology, Histology
Keywords Crustose coralline algae, Disease, Cell death, Boring fauna, Lesion, Histopathology,
Regeneration

INTRODUCTION
Scientific awareness that marine diseases represent a major threat to coral reefs has led

to the multiplication of disease investigations over the past three decades (Weil, 2001;

Harvell et al., 2007; Pollock et al., 2011; Burge et al., 2014). Field monitoring surveys have
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considerably increased our knowledge about macroscopic characteristics, abundance

and distribution of coral reef diseases and the environmental factors influencing their

dynamics (Gladfelter, 1982; Kuta & Richardson, 1996; Hayes & Goreau, 1998; Nugues,

2002; Willis, Page & Dinsdale, 2004; Aeby et al., 2008; Weil, Croquer & Urreiztieta, 2009;

Haapkylä et al., 2010; Tribollet, Aeby & Work, 2011). However, little progress has been

made in elucidating disease causation due to the lack of microscopic pathology (Work

& Meteyer, 2014). Coupled with microbial culture and molecular essays, histopathology

appears as a crucial tool to determine the association between a pathogen and a tissue

lesion. It is therefore a vital step in any effective coral reef disease survey (Work & Meteyer,

2014). It provides insight into cell pathology and host response to help resolve the question

of disease causation (Work et al., 2014). It can detect etiological microorganisms and

propose or refute potential causative agents by their observation in situ. Furthermore, it

provides a great amount of information on the cell and tissue damages associated with

gross lesions (Peters, 1984; Ainsworth et al., 2007a; Burns & Takabayashi, 2011; Williams

et al., 2011; Sudek et al., 2012). Sometimes, even in the absence of pathogens, changes in

the host tissue histology hint at the type of infection and lead to a diagnostic (Gupta et

al., 2009). It is therefore the only current diagnostic tool that allows the establishment

of a link between the potential causative agent and the specific changes in cell and tissue

(Work & Meteyer, 2014). For instance, histology has confirmed the association between a

fungus and the blue-black band lesion in crustose coralline algae (CCA) affected by the

Coralline Fungal disease (CFD) (Williams et al., 2014). However, an integrated approach

(i.e., combining microbiological, microsensor, molecular and physiological techniques) is

necessary in order to incriminate infectious agents as disease causation and thus complete

the diagnostic picture (Richardson et al., 2001; Work & Meteyer, 2014).

Unfortunately, investigations at the cellular level are seriously lacking in diseases

affecting CCA despite the importance of these calcifying algae in marine ecosystems,

especially coral reefs. Along with scleractinian corals, CCA are important primary

producers (Adey & Macintyre, 1973; Chisholm, 2003) and framework builders (Adey &

Vassar, 1975) delivering significant functional services in coral reef ecosystems, including

enhancing coral larval settlement (Morse et al., 1988; Heyward & Negri, 1999; Harrington

et al., 2004; Ritson-Williams et al., 2010; Ritson-Williams et al., 2014). CCA are not spared

by the increasing intensity and severity of marine diseases (Littler & Littler, 1995; Hayes

& Goreau, 1998) and field investigations on CCA diseases have multiplied in recent

years (Aeby et al., 2008; Vargas-Ángel, 2010; Tribollet, Aeby & Work, 2011; Miller et

al., 2013; Quéré, Steneck & Nugues, 2015). At present, six disease categories have been

reported (Vargas-Ángel, 2010; Williams et al., 2014; Quéré, Steneck & Nugues, 2015), but

only CFD and coralline lethal orange disease (CLOD) have known causations. Virtually

nothing is known about the other CCA disease categories and they remain histologically

uncharacterized. Further knowledge on these diseases and the response of their host could

be gained from studies at tissue and cellular levels.

In Curaçao, CCA species are affected by the Coralline White Band Syndrome (CWBS)

and the Coralline White Patch Disease (CWPD) (Quéré, Steneck & Nugues, 2015). Both
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Figure 1 Gross lesions of CCA diseases. (A) CWBS in Paragoniolithon solubile and (B) CWPD in
Hydrolithon boergesenii from Curaçao in 2012. Black arrow shows the white band in CWBS.

pathologies have the potential to reduce the survivorship and settlement of coral planulae

and thus may have important implications for the maintenance and recovery of coral reefs

(Quéré & Nugues, 2015). They differ in gross symptoms, spatio-temporal variations and

lesion spread, suggesting that they may have different causations (Quéré, Steneck & Nugues,

2015). CWBS lesions are defined by a white-band that appears centrally or peripherally and

advances slowly but steadily on the healthy tissue, while CWPD manifests by the presence

of distinct white patches on the healthy crust, suggesting sudden losses of tissue (Figs. 1A

and 1B). Both diseases result in tissue loss with subsequent colonization by endophytic

algae often leading to the death of the diseased patch in the case of CWBS (Quéré, Steneck

& Nugues, 2015). Visible symptoms may have a biotic or abiotic origin. On one hand,

thermal stress has been shown to cause bleaching in both corals and CCA in the laboratory

(Anthony et al., 2008) and algal necroses appear on CCA crust under elevated temperature

in aquaria (Martin & Gattuso, 2009). On the other hand, bacterial pathogens can also cause

bleaching disease in the marine red algae Delisea pulchra (Fernandes et al., 2011). Gross

symptoms in the shape of rings are known to be caused by a bacterial infection in the case

of CLOD (Littler & Littler, 1995) and by fungi in the case of CFD (Williams et al., 2014).

The aim of this study was to describe CWBS and CWPD at the microscopic level in order to

better understand these diseases and their effects on coralline algal tissues.

MATERIALS AND METHODS
Field collection
Crustose coralline algae were sampled in May 2012 at two sites along the leeward coast

of Curaçao, Southern Caribbean (12◦N, 69◦W). Fragments (ca. 10–20 cm2) from four

CCA species were collected using hammer and chisel on the reef terrace at 5–10 m depth

at two reef sites: Hydrolithon boergesenii, Neogoniolithon mamillare and Paragoniolithon

accretum at Water Factory (12◦06′32′′N, 68◦57′14′′W) and Paragoniolithon solubile at
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Table 1 Number of healthy and diseased fragments collected from each species.

Healthy CWBS CWPD Total

Hydrolithon boergesenii 3 1 5 9

Neogoniolithon mamillare 2 4 3 9

Paragoniolithon solubile 1 3 0 4

Paragoniolithon accretum 1 0 0 1

Total 7 8 8 23

Playa Kalki (12◦22′30′′N, 69◦09′31′′W). Sampling was not targeted towards particular

species, but we sought to have an approximately equal number of healthy and diseased

samples. A total of 23 fragments, including 7 healthy fragments, 8 fragments affected by

CWBS and 8 fragments affected by CWPD, were sampled (Table 1). For each diseased

fragment collected, we made sure to incorporate healthy-looking tissue. Each replicate was

selected from a distinct patch. Healthy and diseased fragments of each disease were placed

in separated collecting bags to avoid contamination and transported in the dark to the

laboratory.

Histology
Back in the laboratory, a sample (ca. 2–4 cm2) of each fragment was kept for taxonomic

identification. The pieces used for taxonomic determination were rinsed with freshwater

and dried for six hours in the oven at 60 ◦C before being checked under a dissecting

scope for reproductive and morphological features (Steneck, 1986). The rest was fixed

in 4% Formalin-seawater solution and stored in the fridge until further use. Before

decalcification, a small piece (ca. 1 cm2) was cut from each fragment so that only the crust

of the CCA and a thin (ca. 5 mm) layer of limestone underneath remained. All superficial

epibionts (i.e., mostly filamentous algae) present on the surface of the coralline algae were

removed. In the case of diseased fragments, each piece was chipped so that it included the

boundary between healthy and diseased tissues.

Each sample was then placed in an individual container with 5% L-ascorbic acid

solution to gently decalcify over a period up to one week. The solution within each

container was refreshed every two days. Once the skeleton and limestone were dissolved,

the tissue samples were placed in individual embedding cassettes and dehydrated at room

temperature in ascending grades of ethanol (70%, 80%, 95%, 100%, 100%) for 40 min

each, followed by an immersion in limonene (three baths of 40 min each). Samples that

could not be processed immediately were stored in 70% ethanol for a maximum of 5 days.

This additional step did not affect the results (G Quéré, pers. obs., 2014). CCA tissue was

then placed in three successive baths of paraffin (Paraplast® PlusTM; Sigma-Aldrich, Seelze,

Germany) each time 40 min before being embedded into paraffin blocks. Samples were

orientated so that transverse sectioning was possible. The blocks were stored overnight

at 4 ◦C in the fridge to ease withdrawal from the cassette the following day. The blocks

were sectioned (section thickness 5 and 7 µm) using low profile microtome blades (Leica
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DB80 LX; Leica Biosystems GmbH, Wetzlar, Germany) mounted on a calibrated rotary

microtome (LEICATM RM2245; Leica Microsystems GmbH, Wetzlar, Germany). Sections

were floated onto water (20 ◦C), mounted onto clean slides and dehydrated on a slide

drying bench for minimum 40 min at 50 ◦C.

Sections were then rehydrated and stained following the Sharman staining series

(Sharman, 1943) modified from Ruzin (1999). This method stains the cell walls of plant

tissue in tannic acid and iron alum after the protoplasts have been stained in safranin

and orange G (see Document S2 for detailed staining procedure). Several other staining

methods were tried, but this method was the most effective to visualize the different

cellular components of CCA. Sections were then dehydrated in successive baths of ethanol

(45%, 90% and 100%) and cleared with limonene. Coverslips were finally mounted using

adhesive resin. We examined and photographed 10 permanent histology sections of each

CCA fragment using light microscopy (Leica DM750; Leica Microsystems GmbH,Wetzlar,

Germany) with integrated camera (Leica ICC50 HD) using the Leica LAS EZ software.

Analyses
Host response was described at the microscopic level and interpreted by comparing normal

healthy fragments paired with diseased ones. The presence of invading organisms, their

type and localization within the tissue were recorded. In each fragment, organisms could

be present in the CCA crust (i.e., epithallus, perithallus and/or hypothallus) or in the

limestone underneath the crust. In addition, in diseased fragments, we noted whether

they were located in the healthy-looking and/or diseased tissues of the fragments. The

identification of the invading organisms was beyond the scope of this study and was

restricted to two boring categories: macroborers (i.e., boring sponges, helminths and

others) and microborers (i.e., cyanobacteria). Sample sizes were not sufficient to allow

robust statistical analysis. All results are reported for pooled species of CCA as the

number of replicates per species was too low to make comparisons between species, but

species-specific data are listed in Table S1.

RESULTS
The four CCA species presented similar responses towards diseases. For both diseases,

we observed no difference in cell structure and organization between healthy tissue

of healthy CCA and healthy-looking tissue of diseased CCA. Cell walls and contents

in healthy-looking tissue of diseased CCA were intact without any apparent damage

(Figs. 2B and 3B). In contrast, the diseased part of the tissue showed distinct histological

changes between diseases. Cells affected by both CWBS and CWPD presented no apparent

damage of their cell walls, but showed a complete depletion of their protoplasmic content

(Figs. 2D and 3D). However, in all cases of CWBS, we observed a transition area between

healthy and dead cells consisting of cells that were partially deprived of protoplasmic

content (Fig. 2C). Cells containing what appeared to be a condensed nucleus or balled up

cytoplasmic materials were also frequently observed (Fig. 4A insert). This transition area

most likely corresponds to the white band in the gross morphology (Fig. 1A). It did not

exist in CWPD tissue where healthy-looking cells were in immediate vicinity of empty dead
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Figure 2 Transversal histological sections of the CCA, Paragoniolithon solubile affected by CWBS
stained in Sharman’s (1943) stain. (A) Overview with locations of the healthy, boundary and dead areas
enlarged in (B), (C) and (D). Note the presence of a transition area with progressive loss of staining from
healthy tissue (HT) to dead tissue (DT). B, Boundary; Ep, epithallial cells; Cw, cell wall (silver stain); P,
protoplasm (orange to dark stain).

cells (Fig. 3C). In two cases of CWBS and one case of CWPD, we observed an overgrowth of

the diseased/dead surface by the healthy crust, suggesting tissue recovery (Figs. 4A and 4B).

Various macroborers and microborers were observed in both healthy and diseased

tissues (Fig. 5). They were more abundant in diseased fragments, particularly in CWBS.

Of the 7 healthy fragments examined, 4 (57%) had invading macro- and microorganisms

versus all of 8 CWBS fragments and 5 (63%) of the 8 CWPD fragments (Table 2). Of

13 diseased fragments with evidence of boring organisms, sponges were most common

(62%) followed by other macroborers (38%) and cyanobacteria (31%). Of the four healthy

fragments with borers, 3 had sponges and two had other macroborers and cyanobacteria

were not encountered. Within diseased fragments, borers were also more abundant in the

diseased tissue of the fragments. Of 13 diseased fragments, 5 (38%) presented borers in

their healthy-looking tissue, whereas 12 (92%) showed intrusion by borers in their diseased

tissue (Table S1). However, boring organisms were rarely present within or in the imme-

diate vicinity of diseased cells. Boring organisms were more abundant in the underlying

limestone than in the CCA crust. In CWPD, borers were found exclusively in the limestone

of all 5 diseased fragments containing borers. Cyanobacteria were never seen in the CCA

crust. We did not visualize any fungal infections associated with the diseased cells.
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Figure 3 Transversal histological sections of the CCA, Hydrolithon boergesenii affected by CWPD
stained in Sharman’s (1943) stain. (A) Overview with locations of the healthy (HT) and diseased areas
(DT) enlarged in (B) and (D). (C) shows the boundary (B) between healthy and diseased areas. Note
the absence of a transition area highlighted by sudden loss of staining. B, Boundary; Co, conceptacle; Ep,
epithallial cells; Cw, cell wall (silver stain); P, protoplasm (orange to dark stain).

DISCUSSION
This is the first study providing histological information on CWBS and CWPD. We found

no visible difference between healthy tissues of healthy and diseased crusts, which suggests

that the action of the disease is localized, at least at the cellular scale. However, variations

could occur at a smaller scale. For example, distinct differences in bacterial community

between non-diseased corals and healthy-looking tissues of colonies affected by white band

disease have been highlighted in Orbicella annularis using molecular techniques (Pantos

et al., 2003). In tissue affected by both diseases, the three distinct cell layers characteristic

of CCA (epithallus, perithallus and hypothallus) showed cells with an intact cell wall, but
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Figure 4 Regrowth of living crust. Regrowth of living crust in (A) CWBS and (B) CWPD. Remnant
healthy crust (red arrows) regrew upward and laterally over dead/dying crust. Insert in (A) displays
enlargement of transition area with cells showing a condensed nucleus or protoplasmic content (black
arrows). T, Transition; Ep, epithallial cells.

depleted from all cytoplasmic content as highlighted by a sudden change in the intensity

of the staining. A plausible explanation to cell bleaching is the loss of pigments as already

known in corals during bleaching events (Kleppel, Dodge & Reese, 1989). CCA contain

phycobilins (phycoerythrin and phycocyanin) pigments that are present in living tissue.

Their loss could be followed by tissue necrosis and death (Fernandes et al., 2011). CCA

also commonly experience sloughing events (Keats, Knight & Pueschel, 1997). However, the
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Figure 5 Photomicrographs of the most commonly encountered organisms in healthy and diseased
CCA. (A) Boring sponge characterized by silicaceous spicules (red arrow) (B) Unidentified macroborer.
Note the CCA cells lining up the burrow suggesting the growth of the algae around the invader (red
arrow) and the acellular space around the organism (black arrow). (C) Unidentified macroborer, possibly
a juvenile bivalve. (D) Cyanobacterial trichomes (red arrows); (E) Helminth; Cu, cuticule; L, lumen.
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Table 2 Number of samples with boring organisms. Number of samples with boring organisms partitioned by health status of CCA fragments
(i.e., healthy, CWBS vs. CWPD), health of tissue within fragment (i.e., healthy vs. diseased) and vertical layer within fragment (i.e., CCA crust vs.
limestone).

Health of fragment Healthy CWBS CWPD

Health of tissue HT HT DT HT DT

Vertical layer C L T C L C L T C L C L T

Number of samples 7 8 8

Samples with borers 1 3 4 2 4 2 6 8 1 5 5

Samples with sponges 3 3 2 2 3 4 5 1 5 5

Samples with helminths 1 1

Samples with other macroborers 1 1 2 2 3 1 3 4

Samples with cyanobacteria 2 2 3 1 1

Notes.
HT, healthy tissue; DT, diseased tissue; C, crust; L, limestone; T, total fragment.
Note that the numbers can add up more than for the total fragments since the same fragment may have borers in different sections of the sample.

signs detected in this study differ from sloughing. During a sloughing event, epithallial cells

are lost or appear loose (Keats, Knight & Pueschel, 1997; Garbary et al., 2013). Here, they

remained present in all the diseased fragments as clearly visible in Fig. 3. Additionally, all

the different cell layers showed similar changes in the diseased part of the crust (difference

in cell staining intensity) whereas in the case of a sloughing event, only the superficial

epithallial cells would have shown deterioration.

In CWPD, healthy cells were in immediate vicinity of diseased empty cells whereas in

CWBS, a transition area existed where cells had less protoplasmic content than healthy cells

as highlighted by a weaker stain within the cells. This transition area could be the sign of a

chronic, slowly progressing disease which is reflected in the slow but steady rates of CWBS

progression on healthy tissue (i.e., 0.21 ± 0.06 cm month−1 in Quéré, Steneck & Nugues,

2015). In contrast, CWPD generally manifests by a sudden and extensive loss of tissue,

often with a rapid turn-over (G Quéré and M Nugues, pers. obs., 2012), characteristic of

acute diseases (Work, Russell & Aeby, 2012; McCoy & Kamenos, 2015).

Dead cells were characterized by an intact cell wall and a complete loss of protoplasmic

content. In the case of CWBS, some cells in the transition area showed a highly visible

nuclei or rounded cytoplasmic content. Histology confirmed cell death but the technique

used here did not allow us to determine whether death was the result of necrosis or

programmed cell death (PCD). The former is triggered by external factors often affecting

many cells within a tissue, while the latter is triggered by intracellular signals activating

specific gene expression at the level of a single cell (Greenberg, 1997; Dunn et al., 2012).

These phenomena have rarely been studied in multicellular algae (Garbary et al., 2013)

and remain poorly understood. Both have been highlighted during bleaching in the

sea anemone Aiptasia sp. using a combination of histology, electron microscopy and

in-situ end labelling of DNA fragmentation (Dunn et al., 2002). In the transition area, the

sudden high visibility of the nuclei or rounded cytoplasmic content could be related to the

condensation of the nucleus during PCD. Similar cellular degradation has been observed
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in Acroporid corals affected by white syndromes (Ainsworth et al., 2007b). However,

several other distinct features are necessary to differentiate necrosis (e.g., vacuolization,

cell rupture, tissue degradation) and PCD (e.g., cell shrinkage, formation of accumulation

bodies) (Dunn et al., 2002; Franklin, Brussaard & Berges, 2006). Interestingly, plants can

also present a hypersensitive response that consists of rapid death after infection by a

pathogen (e.g., fungi, bacteria, viruses, nematodes) in order to prevent its spread (Garbary

et al., 2013). This phenomenon could constitute a plausible explanation for the CWPD

symptoms. However, further analyses are required to test this hypothesis.

We observed regrowth of healthy-looking tissue over diseased tissue in both diseases.

In reef-building corals, an immune response and repair mechanism consisting of a locally

accelerated growth has been shown in wounded colonies (D’Angelo et al., 2012). We could

interpret this regrowth as a response of the remaining healthy tissue to counteract the

progression of the lesion like a wound healing response in CCA. Similarly, CCA are

capable of healing wounds caused by herbivores grazing on their crust by regeneration

of perithallial cells within the thallus (Steneck, 1983). This healing response could explain

the presence of CCA cells lining up the burrow around the invading organisms (Fig. 5B).

CCA may have repaired cells around those damaged by the borer. Alternatively, the algal

tissue could have grown around the invaders.

We found various metazoa (sponges, helminth, bivalve juveniles) and microrganisms

(cyanobacteria) associated with both healthy and diseased CCA tissue. This is consistent

with previous studies which have shown the presence of those organisms in healthy and

diseased coral colonies (Work & Aeby, 2011; Séré et al., 2013) and in live and dead coralline

thalli (Tribollet & Payri, 2001). These organisms were more abundant in diseased than

healthy CCA fragments, and, within diseased fragments, they were more abundant in

diseased vs healthy tissue, suggesting a potential link between CCA diseases and the

presence of borers. However, it is unknown whether these borers are the cause of the

disease or opportunistic secondary colonizers. Among the organisms observed here,

several have been identified as pathogenic in other species. This is the case for helminths

known to cause tissue loss in Montipora (Jokiel & Townsley, 1974) or cyanobacteria which

appear to cause tissue lysis and necrosis in black band diseased corals (Ainsworth et al.,

2007a). Ciliates are also frequently associated with diseases and capable of invading animal

and plant tissue by breaking cell membranes and walls using enzymes such as proteases

(Work & Aeby, 2011). In our observations, boring organisms did not seem to be associated

with evident cell pathology, suggesting a secondary invasion. Indeed, diseases may weaken

or damage coralline tissues, thus facilitating invasion by borers. The mechanical (chip

production) and chemical (dissolution) bioerosion of calcium carbonate by boring

sponges or bivalves has been reported (Lazar & Loya, 1991; Zundelevich, Lazar & Ilan,

2007). In our study, the acellular space observed around the different invaders could be due

to a digestive effect of the borer on the surrounding CCA cells creating a dead zone around

them. It is also possible that the presence of an organism would have weakened the tissue

around it leading to its loss during fixation.
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Microborers are also well-known agents of bioerosion in live and dead CCA thalli

causing higher rates of erosion in dead versus live thalli (Tribollet & Payri, 2001). The

same way dead coral skeletons are colonised at the surface and bored inwards, diseased

crusts could become rapidly vulnerable to invaders (Tribollet & Payri, 2001). Previous

studies looking at the association between host response and potential agents revealed that

sponges, cyanobacteria and helminths are absent from acute lesions but often associated

with chronic diseases, such as the slowly progressing phases of White Syndromes in

Montipora capitata (Work, Russell & Aeby, 2012). Our observations confirm this pattern

since sponges were often found spreading through the crust and the limestone in CWBS

fragments. In contrast, in CWPD fragments, sponges were exclusively located in the

limestone, suggesting that they did not have time to invade the crust. There is evidence

that macroborers such as bivalves or sponges could take a couple of years to colonize dead

skeleton, as they are long-lived, slow-growing organisms (Tribollet & Golubic, 2011).

The increase of borers within the coralline tissue could have a cascading effect by making

carbonate substrata available to new borers, thus increasing their eroding action. Ocean

acidification also accelerates reef bioerosion without necessarily affecting the health of bor-

ing organisms (Wisshak et al., 2013). Furthermore, synergistic effects of ocean warming,

ocean acidification and disease infection enhance the reduction in the calcification rates

of CCA (Williams et al., 2014). In the face of climate change, disease outbreaks may thus,

together with global stressors and boring organisms, aggravate reef degradation.

Histological observations of lesions from the two diseases did not reveal any evidence

for the presence of fungi. A fungus belonging to the subphylum Ustilaginomycetes has been

identified as the pathogenic agent responsible for CFD thanks to conventional histology

(Williams et al., 2014). We could deduce that fungi are not implicated in CWBS and

CWPD. Similarly, fungi were not observed in the white syndrome of Acroporid corals

(Ainsworth et al., 2007b). Our method did not allow for the visualization of bacteria

which have been identified as causal agents for CLOD (Littler & Littler, 1995). Visualizing

bacteria using conventional histology would have required the use of Taylor’s gram stains

(Peters, 1983; Work & Rameyer, 2005). Additional techniques such as the embedding of

tissue in agar and the use of fluorescence in situ hybridisation (FISH) or transmission

electron microscopy (TEM) (Work, Russell & Aeby, 2012) have also been suggested to

improve bacterial detectability in coral tissues (Bythell et al., 2002). The same applies

for virus-like particules (VLPs) whose presence can be detected using TEM and flow

cytometry (Davy et al., 2006). Viruses have been associated with the presence of syncitia

inside cells (Work, Russell & Aeby, 2012); however, they were not observed in this study.

The potential implication of viruses in coral disease is still unknown but thermally stressed

corals produce numerous VLPs (Davy et al., 2006; Rosenberg et al., 2009). Although this

study did not identify the agents responsible of the diseases, it allows to narrow the pool of

potential suspects. The use of an integrated approach is necessary for further progress on

the complete diagnosis of CCA disease.
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CONCLUSIONS
This study brings a descriptive distinction at the cellular level between CWBS and CWPD.

Observations of the diseased tissues were consistent with the signs described in the field.

CWBS known to progress slowly but steadily over the CCA in the field showed a transition

zone in microscopy. In contrast, CWPD known to cause a sudden loss of tissue in CCA

had no transition zone. Although boring organisms were observed at higher abundances

within diseased tissues in comparison to healthy ones, we did not find evidence of a

direct link between the presence of invaders and the disease lesion. However, the range

of potential pathogens could be narrowed as no sign of fungal infection was observed.

Standard techniques in histopathology alone cannot elucidate the question of disease

causation. Additional methods are necessary to complete the diagnosis picture.
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Quéré et al. (2015), PeerJ, DOI 10.7717/peerj.1034 16/18

https://peerj.com
http://dx.doi.org/10.4319/lo.1989.34.7.1331
http://dx.doi.org/10.1007/BF01787455
http://dx.doi.org/10.4319/lo.1991.36.2.0377
http://dx.doi.org/10.1126/science.267.5202.1356
http://dx.doi.org/10.1111/j.1365-2486.2009.01874.x
http://dx.doi.org/10.1111/jpy.12262
http://dx.doi.org/10.1071/MF12330
http://dx.doi.org/10.1016/0022-0981(88)90027-5
http://dx.doi.org/10.3354/meps229061
http://dx.doi.org/10.1046/j.1462-2920.2003.00427.x
http://dx.doi.org/10.1016/0022-2011(83)90260-4
http://dx.doi.org/10.1007/BF01989298
http://dx.doi.org/10.1371/journal.ppat.1002183
http://dx.doi.org/10.1007/s00338-015-1292-0
http://dx.doi.org/10.1007/s00338-014-1225-3
http://dx.doi.org/10.1023/A:1013187723831
http://dx.doi.org/10.1007/s00338-013-1113-2
http://dx.doi.org/10.1007/s00338-009-0555-z
http://dx.doi.org/10.7717/peerj.1034


Rosenberg E, Kushmaro A, Kramarsky-Winter E, Banin E, Yossi L. 2009. The role of
microorganisms in coral bleaching. The ISME Journal 3:139–146 DOI 10.1038/ismej.2008.104.

Ruzin SE. 1999. Plant microtechnique and microscopy. Oxford: Oxford University Press.
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