D. Grieshaber, R. Mackenzie, J. Vörös, and E. Reimhult, Electrochemical Biosensors - Sensor Principles and Architectures, Sensors, vol.8, issue.3, pp.1400-1458, 2008.
DOI : 10.3390/s8031400

A. Hayat and J. L. Marty, Aptamer based electrochemical sensors for emerging environmental pollutants, Frontiers in Chemistry, vol.129, issue.2
DOI : 10.1021/ja067024b

URL : https://hal.archives-ouvertes.fr/hal-01174750

R. S. Luz, R. Iost, and F. Crespilho, Nanomaterials for Biosensors and Implantable Biodevices, pp.27-48, 2013.
DOI : 10.1007/978-3-642-29250-7_2

Y. Meng, L. Aldous, S. R. Belding, and R. G. Compton, The formal potentials and electrode kinetics of the proton/hydrogen couple in various room temperature ionic liquids, Chemical Communications, vol.125, issue.45, pp.2012-5572
DOI : 10.1039/c2cc31402a

A. Hayat and J. L. Marty, Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring, Sensors, vol.14, issue.6, pp.10432-10453, 2014.
DOI : 10.3390/s140610432

URL : https://hal.archives-ouvertes.fr/hal-01166428

A. Hayat, C. Yang, A. Rhouati, and J. L. Marty, Recent Advances and Achievements in Nanomaterial-Based, and Structure Switchable Aptasensing Platforms for Ochratoxin A Detection, Sensors, vol.13, issue.11, pp.15187-15208, 2013.
DOI : 10.3390/s131115187

M. Dequaire, C. Degrand, and B. Limoges, An Electrochemical Metalloimmunoassay Based on a Colloidal Gold Label, Analytical Chemistry, vol.72, issue.22, pp.5521-5528, 2000.
DOI : 10.1021/ac000781m

A. Chen and S. Chatterjee, Nanomaterials based electrochemical sensors for biomedical applications, Chemical Society Reviews, vol.42, issue.12, pp.5425-5438, 2013.
DOI : 10.1039/c3cs35518g

H. Li, S. Liu, Z. Dai, J. Bao, and X. Yang, Applications of Nanomaterials in Electrochemical Enzyme Biosensors, Sensors, vol.9, issue.11, pp.8547-8561, 2009.
DOI : 10.3390/s91108547

S. Song, Y. Qin, Y. He, Q. Huang, C. Fan et al., Functional nanoprobes for ultrasensitive detection of biomolecules, Chemical Society Reviews, vol.462, issue.11, pp.4234-4243, 2010.
DOI : 10.1039/c000682n

R. M. Iost, W. C. Da-silva, J. M. Madurro, A. G. Madurro, L. F. Ferreira et al., Recent advances in nano-based electrochemical biosensors: Application in diagnosis and monitoring of diseases, Front. Biosci, vol.3, pp.663-689, 2011.

G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, vol.277, issue.5330, pp.1232-1237, 1997.
DOI : 10.1126/science.277.5330.1232

Q. Bricaud, R. M. Fabre, R. N. Brookins, K. S. Schanze, and J. Reynolds, Energy Transfer between Conjugated Polyelectrolytes in Layer-by-Layer Assembled Films, Langmuir, vol.27, issue.8, pp.5021-5028, 2011.
DOI : 10.1021/la105113k

W. S. Alencar, F. N. Crespilho, M. R. Santos, V. Zucolotto, O. N. Oliveira et al., Influence of Film Architecture on the Charge-Transfer Reactions of Metallophthalocyanine Layer-by-Layer Films, The Journal of Physical Chemistry C, vol.111, issue.34, pp.12817-12821, 2007.
DOI : 10.1021/jp070695r

R. A. De-sousa-luz, M. V. Martins, J. L. Magalhães, J. R. Siqueira, . Jr et al., Supramolecular architectures in layer-by-layer films of single-walled carbon nanotubes, chitosan and cobalt (II) phthalocyanine, Materials Chemistry and Physics, vol.130, issue.3, pp.1072-1077, 2011.
DOI : 10.1016/j.matchemphys.2011.08.038

W. S. Alencar, F. N. Crespilho, M. V. Martins, V. Zucolotto, J. O. Oliveira et al., Synergistic interaction between gold nanoparticles and nickel phthalocyanine in layer-by-layer (LbL) films: evidence of constitutional dynamic chemistry (CDC), Physical Chemistry Chemical Physics, vol.469, issue.25, pp.5086-5091, 2009.
DOI : 10.1039/b821915j

J. Lei and H. Ju, Signal amplification using functional nanomaterials for biosensing, Chemical Society Reviews, vol.4, issue.6, pp.2122-2134
DOI : 10.1039/c1cs15274b

M. Pandiaraj, T. Madasamy, P. N. Gollavilli, M. Balamurugan, S. Kotamraju et al., Nanomaterial-based electrochemical biosensors for cytochrome c using cytochrome c reductase, Bioelectrochemistry, vol.91, pp.1-7, 2013.
DOI : 10.1016/j.bioelechem.2012.09.004

J. Wang, Nanomaterial-based electrochemical biosensors, The Analyst, vol.50, issue.4, pp.421-426, 2005.
DOI : 10.1039/b414248a

K. Kerman, M. Saito, E. Tamiya, S. Yamamura, and Y. Takamura, Nanomaterial-based electrochemical biosensors for medical applications, TrAC Trends in Analytical Chemistry, vol.27, issue.7, pp.585-592, 2008.
DOI : 10.1016/j.trac.2008.05.004

W. Putzbach and N. J. Ronkainen, Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review, Sensors, vol.13, issue.4, pp.4811-4840, 2013.
DOI : 10.3390/s130404811

S. A. Ansari and Q. Husain, Potential applications of enzymes immobilized on/in nano materials: A review, Biotechnology Advances, vol.30, issue.3, pp.512-523, 2012.
DOI : 10.1016/j.biotechadv.2011.09.005

H. Jia, G. Zhu, and P. Wang, Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility, Biotechnology and Bioengineering, vol.31, issue.90, pp.406-414, 2003.
DOI : 10.1002/bit.10781

M. Ali and M. Winterer, ZnO Nanocrystals: Surprisingly ???Alive???, Chemistry of Materials, vol.22, issue.1, pp.85-91, 2009.
DOI : 10.1021/cm902240c

Y. Ni, X. Cao, G. Wu, G. Hu, Z. Yang et al., Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method, Nanotechnology, vol.18, issue.15, pp.155-161, 2007.
DOI : 10.1088/0957-4484/18/15/155603

A. Hayat, L. Barthelmebs, and J. Marty, Enzyme-linked immunosensor based on super paramagnetic nanobeads for easy and rapid detection of okadaic acid, Analytica Chimica Acta, vol.690, issue.2, pp.248-252, 2011.
DOI : 10.1016/j.aca.2011.02.031

A. Sassolas, A. Hayat, and J. Marty, Immobilization of Enzymes on Magnetic Beads Through Affinity Interactions, In Immobilization of Enzymes and Cells, pp.139-148, 2013.
DOI : 10.1007/978-1-62703-550-7_10

D. Pinacho, F. Sánchez-baeza, M. Pividori, and M. Marco, Electrochemical Detection of Fluoroquinolone Antibiotics in Milk Using a Magneto Immunosensor, Sensors, vol.14, issue.9, pp.15965-15980, 2014.
DOI : 10.3390/s140915965

M. Martin, P. Salazar, R. Villalonga, S. Campuzano, J. M. Pingarron et al., @poly(dopamine) magnetic nanoparticles for biosensor construction, J. Mater. Chem. B, vol.391, issue.418, pp.739-746, 2014.
DOI : 10.1039/C3TB21171A

C. Yang, L. Kuo, P. Chen, C. Yang, and Z. Tsai, Development of a multilayered polymeric DNA biosensor using radio frequency technology with gold and magnetic nanoparticles, Biosensors and Bioelectronics, vol.31, issue.1, pp.31-349, 2012.
DOI : 10.1016/j.bios.2011.10.044

A. Rhouati, A. Hayat, D. B. Hernandez, Z. Meraihi, R. Munoz et al., Development of an automated flow-based electrochemical aptasensor for on-line detection of Ochratoxin A, Sensors and Actuators B: Chemical, vol.176, pp.1160-1166, 2013.
DOI : 10.1016/j.snb.2012.09.111

R. B. Dominguez, A. Hayat, A. Sassolas, G. A. Alonso, R. Munoz et al., Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample, Talanta, vol.99, pp.232-237, 2012.
DOI : 10.1016/j.talanta.2012.05.045

L. Barthelmebs, A. Hayat, A. W. Limiadi, J. Marty, and T. Noguer, Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles, Sensors and Actuators B: Chemical, vol.156, issue.2, pp.932-937, 2011.
DOI : 10.1016/j.snb.2011.03.008

A. Hayat, L. Barthelmebs, A. Sassolas, and J. Marty, Development of a novel label-free amperometric immunosensor for the detection of okadaic acid, Analytica Chimica Acta, vol.724, pp.92-97, 2012.
DOI : 10.1016/j.aca.2012.02.035

Y. Zhuo, P. Yuan, R. Yuan, Y. Chai, and C. Hong, Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors, Biomaterials, vol.30, issue.12, pp.2284-2290, 2009.
DOI : 10.1016/j.biomaterials.2009.01.002

Z. Liu, Y. Liu, H. Yang, Y. Yang, G. Shen et al., A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode, Analytica Chimica Acta, vol.533, issue.1, pp.3-9, 2005.
DOI : 10.1016/j.aca.2004.10.077

B. Zheng, S. Xie, L. Qian, H. Yuan, D. Xiao et al., Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor, Sensors and Actuators B: Chemical, vol.152, issue.1, pp.49-55, 2011.
DOI : 10.1016/j.snb.2010.09.051

L. Wang, W. Wen, H. Xiong, X. Zhang, H. Gu et al., A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle-chitosan-ionic liquid biocomposite film, Analytica Chimica Acta, vol.758, pp.66-71, 2013.
DOI : 10.1016/j.aca.2012.10.050

A. Florea, Z. Taleat, C. Cristea, M. Mazloum-ardakani, and R. S?ndulescu, Label free MUC1 aptasensors based on electrodeposition of gold nanoparticles on screen printed electrodes, Electrochemistry Communications, vol.33, pp.2013-127
DOI : 10.1016/j.elecom.2013.05.008

K. M. Ho, X. Mao, L. Gu, and P. Li, Facile Route to Enzyme Immobilization: Core???Shell Nanoenzyme Particles Consisting of Well-Defined Poly(methyl methacrylate) Cores and Cellulase Shells, Langmuir, vol.24, issue.19, pp.11036-11042, 2008.
DOI : 10.1021/la8016529

R. Rawal, S. Chawla, and C. S. Pundir, Polyphenol biosensor based on laccase immobilized onto silver nanoparticles/multiwalled carbon nanotube/polyaniline gold electrode, Analytical Biochemistry, vol.419, issue.2, pp.196-204, 2011.
DOI : 10.1016/j.ab.2011.07.028

H. Li, J. He, Y. Zhao, D. Wu, Y. Cai et al., Immobilization of glucose oxidase and platinum on mesoporous silica nanoparticles for the fabrication of glucose biosensor, Electrochimica Acta, vol.56, issue.7, pp.2960-2965, 2011.
DOI : 10.1016/j.electacta.2010.12.098

R. Devi, M. Thakur, and C. S. Pundir, Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles???polypyrrole composite film, Biosensors and Bioelectronics, vol.26, issue.8, pp.3420-3426, 2011.
DOI : 10.1016/j.bios.2011.01.014

S. Mansourimajd, H. Teymourian, A. Salimi, and R. Hallaj, Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode, Electrochimica Acta, vol.108, pp.707-716, 2013.
DOI : 10.1016/j.electacta.2013.07.029

W. Lu, X. Cao, L. Tao, J. Ge, J. Dong et al., A novel label-free amperometric immunosensor for carcinoembryonic antigen based on Ag nanoparticle decorated infinite coordination polymer fibres, Biosensors and Bioelectronics, vol.57, pp.219-225, 2014.
DOI : 10.1016/j.bios.2014.02.027

E. Turkmen, S. Z. Bas, H. Gulce, and S. Yildiz, Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly(o-phenylenediamine) film on platinum nanoparticles-polyvinylferrocenium modified electrode, Electrochimica Acta, vol.123, pp.93-102, 2014.
DOI : 10.1016/j.electacta.2013.12.189

L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nature Nanotechnology, vol.268, issue.9, pp.577-583, 2007.
DOI : 10.1038/nnano.2007.260

L. Ding, A. M. Bond, J. Zhai, and J. Zhang, Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: A review, Analytica Chimica Acta, vol.797, pp.1-12, 2013.
DOI : 10.1016/j.aca.2013.07.035

A. Hayat, Nanoceria Particles As Catalytic Amplifiers for Alkaline Phosphatase Assays, Analytical Chemistry, vol.85, issue.21, pp.10028-10032, 2013.
DOI : 10.1021/ac4020963

Y. Song, K. Qu, C. Zhao, J. Ren, and X. Qu, Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection, Advanced Materials, vol.14, issue.19, pp.2206-2210, 2010.
DOI : 10.1002/adma.200903783

Y. Liu, D. Yu, C. Zeng, Z. Miao, and L. Dai, Biocompatible Graphene Oxide-Based Glucose Biosensors, Langmuir, vol.26, issue.9, pp.6158-6160, 2010.
DOI : 10.1021/la100886x

R. Polsky, R. Gill, and L. Kaganovsky, Nucleic Acid-Functionalized Pt Nanoparticles:?? Catalytic Labels for the Amplified Electrochemical Detection of Biomolecules, Analytical Chemistry, vol.78, issue.7, pp.2268-2271, 2006.
DOI : 10.1021/ac0519864

M. Kajita, K. Hikosaka, M. Iitsuka, A. Kanayama, N. Toshima et al., Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide, Free Radical Research, vol.21, issue.6, pp.615-626, 2007.
DOI : 10.1016/S0304-3940(01)01784-0

T. You, O. Niwa, Z. Chen, K. Hayashi, M. Tomita et al., An Amperometric Detector Formed of Highly Dispersed Ni Nanoparticles Embedded in a Graphite-like Carbon Film Electrode for Sugar Determination, Analytical Chemistry, vol.75, issue.19, pp.5191-5196, 2003.
DOI : 10.1021/ac034204k

H. Heli, M. Hajjizadeh, A. Jabbari, and A. A. Moosavi-movahedi, Fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles, Analytical Biochemistry, vol.388, issue.1, pp.81-90, 2009.
DOI : 10.1016/j.ab.2009.02.021

J. Xu, J. Zhu, H. Wang, and H. Chen, Nano-Sized Copper Oxide Modified Carbon Paste Electrodes as an Amperometric Sensor for Amikacin, Analytical Letters, vol.3, issue.13, pp.2723-2733, 2003.
DOI : 10.1016/S0022-0248(02)01571-3

R. E. Özel, C. Ispas, M. Ganesana, J. C. Leiter, and S. Andreescu, Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments, Biosensors and Bioelectronics, vol.52, pp.397-402, 2014.
DOI : 10.1016/j.bios.2013.08.054

J. Lin, C. He, Y. Zhao, and S. Zhang, One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor, Sensors and Actuators B: Chemical, vol.137, issue.2, pp.768-773, 2009.
DOI : 10.1016/j.snb.2009.01.033

Y. Jv, B. Li, and R. Cao, Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection, Chemical Communications, vol.125, issue.12, pp.8017-8019, 2010.
DOI : 10.1039/c0cc02698k

J. Wang, Nanomaterial-Based Amplified Transduction of Biomolecular Interactions, Small, vol.56, issue.11, pp.1036-1043, 2005.
DOI : 10.1002/smll.200500214

P. Yang, X. Li, L. Wang, Q. Wu, Z. Chen et al., Sandwich-type amperometric immunosensor for cancer biomarker based on signal amplification strategy of multiple enzyme-linked antibodies as probes modified with carbon nanotubes and concanavalin A, Journal of Electroanalytical Chemistry, vol.732, pp.38-45, 2014.
DOI : 10.1016/j.jelechem.2014.08.030

S. Liu and H. Ju, Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode, Biosensors and Bioelectronics, vol.19, issue.3, pp.177-183, 2003.
DOI : 10.1016/S0956-5663(03)00172-6

Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, and I. Willner, "Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle, Science, vol.299, issue.5614, pp.1877-1881, 2003.
DOI : 10.1126/science.1080664

M. Ghalkhani, S. Shahrokhian, and F. Ghorbani-bidkorbeh, Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles, Talanta, vol.80, issue.1, pp.31-38, 2009.
DOI : 10.1016/j.talanta.2009.06.019

A. Jiménez, M. P. Armada, J. Losada, C. Villena, B. Alonso et al., Amperometric biosensors for NADH based on hyperbranched dendritic ferrocene polymers and Pt nanoparticles, Sensors and Actuators B: Chemical, vol.190, pp.111-119, 2014.
DOI : 10.1016/j.snb.2013.08.072

J. Wang, D. Xu, A. Kawde, and R. Polsky, Metal Nanoparticle-Based Electrochemical Stripping Potentiometric Detection of DNA Hybridization, Analytical Chemistry, vol.73, issue.22, pp.5576-5581, 2001.
DOI : 10.1021/ac0107148

S. Guo and E. Wang, Synthesis and electrochemical applications of gold nanoparticles, Analytica Chimica Acta, vol.598, issue.2, pp.181-192, 2007.
DOI : 10.1016/j.aca.2007.07.054

F. Kienberger, G. Kada, H. Mueller, and P. Hinterdorfer, Single Molecule Studies of Antibody???Antigen Interaction Strength Versus Intra-molecular Antigen Stability, Journal of Molecular Biology, vol.347, issue.3, pp.597-606, 2005.
DOI : 10.1016/j.jmb.2005.01.042

G. Lai, F. Yan, J. Wu, C. Leng, and H. Ju, Ultrasensitive Multiplexed Immunoassay with Electrochemical Stripping Analysis of Silver Nanoparticles Catalytically Deposited by Gold Nanoparticles and Enzymatic Reaction, Analytical Chemistry, vol.83, issue.7, pp.2726-2732, 2011.
DOI : 10.1021/ac103283p

W. Dungchai, W. Siangproh, W. Chaicumpa, P. Tongtawe, and O. Chailapakul, Salmonella typhi determination using voltammetric amplification of nanoparticles: A highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label, Talanta, vol.77, issue.2, pp.727-732, 2008.
DOI : 10.1016/j.talanta.2008.07.014

E. Tan, P. Yin, X. Lang, X. Wang, T. You et al., Functionalized gold nanoparticles as nanosensor for sensitive and selective detection of silver ions and silver nanoparticles by surface-enhanced Raman scattering, The Analyst, vol.581, issue.17, pp.3925-3928, 2012.
DOI : 10.1039/c2an35670h

X. Pei, B. Zhang, J. Tang, B. Liu, W. Lai et al., Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review, Analytica Chimica Acta, vol.758, pp.1-18, 2013.
DOI : 10.1016/j.aca.2012.10.060

K. Omidfar and F. Khorsand, New analytical applications of gold nanoparticles as label in antibody based sensors, Biosensors and Bioelectronics, vol.43, pp.336-347, 2013.
DOI : 10.1016/j.bios.2012.12.045

R. S. Das, B. Singh, R. Banerjee, and S. Mukhopadhyay, PVP stabilized Pt nano particles catalyzed de-oxygenation of phenoxazine group by hydrazine in physiological buffer media: surfactant competes with reactants for the same surface sites, Dalton Transactions, vol.75, issue.11, pp.4068-4080
DOI : 10.1039/c2dt32007j

Z. Xu, H. Zhang, H. Zhong, Q. Lu, Y. Wang et al., Effect of particle size on the activity and durability of the Pt/C electrocatalyst for proton exchange membrane fuel cells, Applied Catalysis B: Environmental, vol.111, issue.112, pp.111-112
DOI : 10.1016/j.apcatb.2011.10.007

J. Zhang, B. P. Ting, M. Khan, M. C. Pearce, Y. Yang et al., Pt nanoparticle label-mediated deposition of Pt catalyst for ultrasensitive electrochemical immunosensors, Biosensors and Bioelectronics, vol.26, issue.2, pp.418-423, 2010.
DOI : 10.1016/j.bios.2010.07.112

H. Tang, J. Chen, L. Nie, Y. Kuang, and S. Yao, A label-free electrochemical immunoassay for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and nonconductive polymer film, Biosensors and Bioelectronics, vol.22, issue.6, pp.1061-1067, 2007.
DOI : 10.1016/j.bios.2006.04.027

M. Ozsoz, A. Erdem, K. Kerman, D. Ozkan, B. Tugrul et al., Electrochemical Genosensor Based on Colloidal Gold Nanoparticles for the Detection of Factor V Leiden Mutation Using Disposable Pencil Graphite Electrodes, Analytical Chemistry, vol.75, issue.9, pp.2181-2187, 2003.
DOI : 10.1021/ac026212r

J. Das, M. A. Aziz, and H. Yang, -Nitrophenol by Gold-Nanoparticle Labels, Journal of the American Chemical Society, vol.128, issue.50, pp.16022-16023, 2006.
DOI : 10.1021/ja0672167

URL : https://hal.archives-ouvertes.fr/hal-00159650

H. Cai, Y. Wang, and P. He, Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label, Analytica Chimica Acta, vol.469, issue.2, pp.165-172, 2002.
DOI : 10.1016/S0003-2670(02)00670-0

B. P. Ting, J. Zhang, Z. Gao, and J. Ying, A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry, Biosensors and Bioelectronics, vol.25, issue.2, pp.282-287, 2009.
DOI : 10.1016/j.bios.2009.07.005

L. Feng, Z. Bian, J. Peng, F. Jiang, G. Yang et al., Ultrasensitive Multianalyte Electrochemical Immunoassay Based on Metal Ion Functionalized Titanium Phosphate Nanospheres, Analytical Chemistry, vol.84, issue.18, pp.7810-7815, 2012.
DOI : 10.1021/ac301438v

L. Feng, J. Peng, Y. Zhu, L. Jiang, and J. Zhu, Synthesis of Cd 2+ -functionalized titanium phosphate nanoparticles and application as labels for electrochemical immunoassays, Chem. Commun, vol.48, pp.2012-4474

H. Gao, J. Zhong, P. Qin, C. Lin, W. Sun et al., Electrochemical DNA hybridization assay for the FMV 35S gene sequence using PbS nanoparticles as a label, Microchimica Acta, vol.147, issue.1-2, pp.173-178, 2009.
DOI : 10.1007/s00604-008-0116-0

K. Omidfar, H. Zarei, F. Gholizadeh, and B. Larijani, A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41???polyvinyl alcohol nanocomposite and colloidal gold nanoparticles, Analytical Biochemistry, vol.421, issue.2, pp.649-656, 2012.
DOI : 10.1016/j.ab.2011.12.022

J. Wang, G. Liu, and A. Merkoçi, Electrochemical Coding Technology for Simultaneous Detection of Multiple DNA Targets, Journal of the American Chemical Society, vol.125, issue.11, pp.3214-3215, 2003.
DOI : 10.1021/ja029668z

A. Numnuam, K. Y. Chumbimuni-torres, Y. Xiang, R. Bash, P. Thavarungkul et al., Potentiometric Detection of DNA Hybridization, Journal of the American Chemical Society, vol.130, issue.2, pp.410-411, 2007.
DOI : 10.1021/ja0775467

N. Zhu, A. Zhang, and Q. Wang, Lead Sulfide Nanoparticle as Oligonucleotides Labels for Electrochemical Stripping Detection of DNA Hybridization, Electroanalysis, vol.16, issue.7, pp.577-582, 2004.
DOI : 10.1002/elan.200302835

N. Zhou, J. Li, H. Chen, C. Liao, and L. Chen, A functional graphene oxide-ionic liquid composites???gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+, The Analyst, vol.702, issue.238, pp.1091-1097, 2013.
DOI : 10.1039/c2an36405k

J. Chazalviel and P. Allongue, On the Origin of the Efficient Nanoparticle Mediated Electron Transfer across a Self-Assembled Monolayer, Journal of the American Chemical Society, vol.133, issue.4, pp.762-764, 2010.
DOI : 10.1021/ja109295x

C. Leng, J. Wu, Q. Xu, G. Lai, H. Ju et al., A highly sensitive disposable immunosensor through direct electro-reduction of oxygen catalyzed by palladium nanoparticle decorated carbon nanotube label, Biosensors and Bioelectronics, vol.27, issue.1, pp.71-76, 2011.
DOI : 10.1016/j.bios.2011.06.017

J. Lu, Y. Liu, X. Wang, S. Wang, and X. Di, Development and validation of a rapid high-performance liquid chromatography-tandem mass spectrometry method for the determination of WJ-38, a novel aldose reductase inhibitor, in rat plasma and its application to a pharmacokinetic study, Journal of Chromatography B, vol.893, issue.894, pp.893-894
DOI : 10.1016/j.jchromb.2012.02.024

X. Dong, X. Mi, L. Zhang, T. Liang, J. Xu et al., DNAzyme-functionalized Pt nanoparticles/carbon nanotubes for amplified sandwich electrochemical DNA analysis, Biosensors and Bioelectronics, vol.38, issue.1, pp.337-341, 2012.
DOI : 10.1016/j.bios.2012.06.015

J. Tang, D. Tang, Q. Li, B. Su, B. Qiu et al., Sensitive electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase, Analytica Chimica Acta, vol.697, issue.1-2, pp.16-22, 2011.
DOI : 10.1016/j.aca.2011.04.022

Y. Li, R. Yuan, Y. Chai, and Z. Song, Electrodeposition of gold???platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker, Electrochimica Acta, vol.56, issue.19, pp.6715-6721, 2011.
DOI : 10.1016/j.electacta.2011.05.066

Y. Wang, Y. Zhang, Y. Su, F. Li, H. Ma et al., Ultrasensitive non-mediator electrochemical immunosensors using Au/Ag/Au core/double shell nanoparticles as enzyme-mimetic labels, Talanta, vol.124, pp.60-66, 2014.
DOI : 10.1016/j.talanta.2014.02.035

M. Tu, H. Chen, Y. Wang, S. M. Moochhala, P. Alagappan et al., Immunosensor based on carbon nanotube/manganese dioxide electrochemical tags, Analytica Chimica Acta, vol.853, pp.228-233, 2015.
DOI : 10.1016/j.aca.2014.09.050

Y. Li, C. Xu, H. Li, H. Wang, D. Wu et al., Nonenzymatic immunosensor for detection of carbohydrate antigen 15-3 based on hierarchical nanoporous PtFe alloy, Biosensors and Bioelectronics, vol.56, pp.295-299, 2014.
DOI : 10.1016/j.bios.2014.01.020

F. Xiao, F. Zhao, D. Mei, Z. Mo, and B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes???ionic liquid composite film, Biosensors and Bioelectronics, vol.24, issue.12, pp.3481-3486, 2009.
DOI : 10.1016/j.bios.2009.04.045

J. Xie, X. Zhang, H. Wang, H. Zheng, and Y. Huang, Analytical and environmental applications of nanoparticles as enzyme mimetics, TrAC Trends in Analytical Chemistry, vol.39, pp.114-129, 2012.
DOI : 10.1016/j.trac.2012.03.021

W. He, X. Wu, J. Liu, X. Hu, K. Zhang et al., Design of AgM Bimetallic Alloy Nanostructures (M = Au, Pd, Pt) with Tunable Morphology and Peroxidase-Like Activity, Chemistry of Materials, vol.22, issue.9, pp.2988-2994, 2010.
DOI : 10.1021/cm100393v

Z. Zhang, H. Zhu, X. Wang, and X. Yang, Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase, Microchimica Acta, vol.11, issue.1-2, pp.183-189, 2011.
DOI : 10.1007/s00604-011-0600-9

S. Zhang, S. Tang, J. Lei, H. Dong, and H. Ju, Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing, Journal of Electroanalytical Chemistry, vol.656, issue.1-2, pp.285-288, 2011.
DOI : 10.1016/j.jelechem.2010.10.005

Y. Zhang, K. Zhang, and H. Ma, Electrochemical DNA biosensor based on silver nanoparticles/poly(3-(3-pyridyl) acrylic acid)/carbon nanotubes modified electrode, Analytical Biochemistry, vol.387, issue.1, pp.13-19, 2009.
DOI : 10.1016/j.ab.2008.10.043

H. Kim, H. Kwon, J. Ahn, C. Lee, and I. Ahn, Evaluation of a silica-coated magnetic nanoparticle for the immobilization of a His-tagged lipase, Biocatalysis and Biotransformation, vol.16, issue.4, pp.246-253, 2009.
DOI : 10.1080/10242420903042627

T. R. Besanger, Y. Chen, A. K. Deisingh, R. Hodgson, W. Jin et al., Screening of Inhibitors Using Enzymes Entrapped in Sol???Gel-Derived Materials, Analytical Chemistry, vol.75, issue.10, pp.2382-2391, 2003.
DOI : 10.1021/ac026370i

C. Pan, B. Hu, W. Li, Y. Sun, H. Ye et al., Novel and efficient method for immobilization and stabilization of ??-d-galactosidase by covalent attachment onto magnetic Fe3O4???chitosan nanoparticles, Journal of Molecular Catalysis B: Enzymatic, vol.61, issue.3-4, pp.61-208, 2009.
DOI : 10.1016/j.molcatb.2009.07.003

F. N. Crespilho, M. Emilia-ghica, M. Florescu, F. C. Nart, O. N. Oliveira et al., A strategy for enzyme immobilization on layer-by-layer dendrimer???gold nanoparticle electrocatalytic membrane incorporating redox mediator, Electrochemistry Communications, vol.8, issue.10, pp.1665-1670, 2006.
DOI : 10.1016/j.elecom.2006.07.032

M. Yang, Y. Yang, Y. Liu, G. Shen, and R. Yu, Platinum nanoparticles-doped sol???gel/carbon nanotubes composite electrochemical sensors and biosensors, Biosensors and Bioelectronics, vol.21, issue.7, pp.1125-1131, 2006.
DOI : 10.1016/j.bios.2005.04.009

J. Wang, R. Polsky, and D. Xu, Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization, Langmuir, vol.17, issue.19, pp.5739-5741, 2001.
DOI : 10.1021/la011002f

M. Ahmad, C. Pan, L. Gan, Z. Nawaz, and J. Zhu, Highly Sensitive Amperometric Cholesterol Biosensor Based on Pt-Incorporated Fullerene-like ZnO Nanospheres, The Journal of Physical Chemistry C, vol.114, issue.1, pp.243-250, 2009.
DOI : 10.1021/jp9089497

T. Jeyapragasam and R. Saraswathi, Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide???chitosan nanocomposite, Sensors and Actuators B: Chemical, vol.191, pp.681-687, 2014.
DOI : 10.1016/j.snb.2013.10.054

A. Shi, J. Wang, and X. Han, Fang, X.; Zhang, Y. A sensitive electrochemical DNA biosensor based on gold nanomaterial and graphene amplified signal, Sens. Actuators B Chem, pp.206-212, 0200.

S. Zhang, L. Zhang, X. Zhang, P. Yang, and J. Cai, An efficient nanomaterial-based electrochemical biosensor for sensitive recognition of drug-resistant leukemia cells, The Analyst, vol.90, issue.14, pp.3629-3635, 2014.
DOI : 10.1039/c4an00420e

X. Liu, J. Zhang, R. Yan, Q. Zhang, and X. Liu, Preparation of graphene nanoplatelet???titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials, Biosensors and Bioelectronics, vol.51, pp.76-81, 2014.
DOI : 10.1016/j.bios.2013.07.029

S. Palanisamy, C. Karuppiah, and S. M. Chen, Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode, Colloids and Surfaces B: Biointerfaces, vol.114, pp.164-169, 2014.
DOI : 10.1016/j.colsurfb.2013.10.006

W. Song, H. Li, H. Liang, W. Qiang, and D. Xu, Disposable Electrochemical Aptasensor Array by Using in Situ DNA Hybridization Inducing Silver Nanoparticles Aggregate for Signal Amplification, Analytical Chemistry, vol.86, issue.5, pp.2775-2783, 2014.
DOI : 10.1021/ac500011k

W. Xu, Y. Wu, H. Yi, L. Bai, Y. Chai et al., Porous platinum nanotubes modified with dendrimers as nanocarriers and electrocatalysts for sensitive electrochemical aptasensors based on enzymatic signal amplification, Chem. Commun., vol.47, issue.620, pp.2014-1451
DOI : 10.1039/C3CC46725B

P. Xiong, N. Gan, H. Cui, J. Zhou, Y. Cao et al., Incubation-free electrochemical immunoassay for diethylstilbestrol in milk using gold nanoparticle-antibody conjugates for signal amplification, Microchimica Acta, vol.33, issue.167, pp.453-462, 2014.
DOI : 10.1007/s00604-013-1131-3

H. Wang, X. Li, K. Mao, Y. Li, B. Du et al., Electrochemical immunosensor for ??-fetoprotein detection using ferroferric oxide and horseradish peroxidase as signal amplification labels, Analytical Biochemistry, vol.465, pp.121-126, 2014.
DOI : 10.1016/j.ab.2014.08.016

X. Jia, X. Chen, J. Han, J. Ma, and Z. Ma, Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay, Biosensors and Bioelectronics, vol.53, pp.65-70, 2014.
DOI : 10.1016/j.bios.2013.09.021

J. Gao, Z. Guo, F. Su, L. Gao, X. Pang et al., Ultrasensitive electrochemical immunoassay for CEA through host???guest interaction of ??-cyclodextrin functionalized graphene and Cu@Ag core???shell nanoparticles with adamantine-modified antibody, Biosensors and Bioelectronics, vol.63, pp.465-471, 2015.
DOI : 10.1016/j.bios.2014.07.081

R. Akter, C. Kyun-rhee, and M. Aminur-rahman, Sensitivity enhancement of an electrochemical immunosensor through the electrocatalysis of magnetic bead-supported non-enzymatic labels, Biosensors and Bioelectronics, vol.54, pp.351-357, 2014.
DOI : 10.1016/j.bios.2013.10.058

R. Feng, Y. Zhang, H. Ma, D. Wu, H. Fan et al., Ultrasensitive non-enzymatic and non-mediator electrochemical biosensor using nitrogen-doped graphene sheets for signal amplification and nanoporous alloy as carrier, Electrochimica Acta, vol.97, pp.105-111, 2013.
DOI : 10.1016/j.electacta.2013.02.093

B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo et al., Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene, Biosensors and Bioelectronics, vol.43, pp.131-136, 2013.
DOI : 10.1016/j.bios.2012.11.040

G. Li, T. Li, Y. Deng, Y. Cheng, F. Shi et al., Electrodeposited nanogold decorated graphene modified carbon ionic liquid electrode for the electrochemical myoglobin biosensor, Journal of Solid State Electrochemistry, vol.40, issue.8, pp.2333-2340, 2013.
DOI : 10.1007/s10008-013-2098-z

B. Zhao, Z. Liu, W. Fu, and H. Yang, Construction of 3D electrochemically reduced graphene oxide???silver nanocomposite film and application as nonenzymatic hydrogen peroxide sensor, Electrochemistry Communications, vol.27, pp.2013-2014
DOI : 10.1016/j.elecom.2012.10.040

K. J. Babu, A. Zahoor, K. Nahm, R. Ramachandran, M. A. Rajan et al., The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide, Journal of Nanoparticle Research, vol.109, issue.1, pp.1-10, 2014.
DOI : 10.1007/s11051-014-2250-4