J. Wang, Real-Time Electrochemical Monitoring:?? Toward Green Analytical Chemistry, Accounts of Chemical Research, vol.35, issue.9
DOI : 10.1021/ar010066e

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.452.8989

P. T. Anastas, Green Chemistry and the Role of Analytical Methodology Development, Critical Reviews in Analytical Chemistry, vol.29, issue.3, pp.167-175, 1999.
DOI : 10.1080/10408349891199356

N. Thiyagarajan, J. Chang, K. Senthilkumar, and J. Zen, Disposable electrochemical sensors: A mini review, Electrochemistry Communications, vol.38, pp.86-90, 2014.
DOI : 10.1016/j.elecom.2013.11.016

K. C. Honeychurch and J. P. Hart, Screen-printed electrochemical sensors for monitoring metal pollutants, TrAC Trends in Analytical Chemistry, vol.22, issue.7, pp.456-469, 2003.
DOI : 10.1016/S0165-9936(03)00703-9

E. Bakker, P. Bühlmann, and E. Pretsch, Polymer Membrane Ion-Selective Electrodes?What are the Limits? Electroanalysis, pp.915-933, 1999.

J. Wang, Remote electrochemical sensors for monitoring inorganic and organic pollutants, TrAC Trends in Analytical Chemistry, vol.16, issue.2, pp.84-88, 1997.
DOI : 10.1016/S0165-9936(96)00094-5

J. P. Metters, R. O. Kadara, and C. Banks, New directions in screen printed electroanalytical sensors: an overview of recent developments, The Analyst, vol.75, issue.12, pp.1067-1076, 2011.
DOI : 10.1039/c0an00894j

M. Li, Y. Li, D. Li, and Y. Long, Recent developments and applications of screen-printed electrodes in environmental assays???A review, Analytica Chimica Acta, vol.734, pp.31-44, 2012.
DOI : 10.1016/j.aca.2012.05.018

O. D. Renedo, M. A. Alonso-lomillo, and M. J. Martí-nez, Recent developments in the field of screen-printed electrodes and their related applications, Talanta, vol.73, issue.2, pp.202-219, 2007.
DOI : 10.1016/j.talanta.2007.03.050

J. Wang, J. Lu, S. B. Hocevar, P. A. Farias, and B. Ogorevc, Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry, Analytical Chemistry, vol.72, issue.14, pp.3218-3222, 2000.
DOI : 10.1021/ac000108x

R. W. Murray, A. G. Ewing, and R. A. Durst, Chemically modified electrodes. Molecular design for electroanalysis, Anal. Chem, vol.59, pp.379-390, 1987.

A. Hayat, C. Yang, A. Rhouati, and J. Marty, Recent Advances and Achievements in Nanomaterial-Based, and Structure Switchable Aptasensing Platforms for Ochratoxin A Detection, Sensors, vol.13, issue.11, pp.15187-15208, 2013.
DOI : 10.3390/s131115187

A. Hayat, S. Andreescu, and J. Marty, Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: Application to the label free detection of small size molecules, Biosensors and Bioelectronics, vol.45, pp.168-173, 2013.
DOI : 10.1016/j.bios.2013.01.059

A. Hayat, W. Haider, M. Rolland, and J. Marty, Electrochemical grafting of long spacer arms of hexamethyldiamine on a screen printed carbon electrode surface: application in target induced ochratoxin A electrochemical aptasensor, The Analyst, vol.24, issue.10, pp.2951-2957, 2013.
DOI : 10.1039/c3an00158j

A. Heller and B. Feldman, Electrochemical Glucose Sensors and Their Applications in Diabetes Management, Chemical Reviews, vol.108, issue.7, pp.2482-2505, 2008.
DOI : 10.1021/cr068069y

J. D. Newman and A. P. Turner, Home blood glucose biosensors: a commercial perspective, Biosensors and Bioelectronics, vol.20, issue.12, pp.2435-2453, 2005.
DOI : 10.1016/j.bios.2004.11.012

R. Wilson and A. P. Turner, Glucose oxidase: an ideal enzyme, Biosensors and Bioelectronics, vol.7, issue.3, pp.165-185, 1992.
DOI : 10.1016/0956-5663(92)87013-F

J. P. Hart and S. A. Wring, Recent developments in the design and application of screen-printed electrochemical sensors for biomedical, environmental and industrial analyses, TrAC Trends in Analytical Chemistry, vol.16, issue.2, pp.89-103, 1997.
DOI : 10.1016/S0165-9936(96)00097-0

A. Hayat, J. Marty, and A. Radi, Novel Amperometric Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Azide Covalently Immobilized on Ethynyl-Modified Screen-Printed Carbon Electrode via Click Chemistry, Electroanalysis, vol.391, issue.6, pp.1446-1452, 2012.
DOI : 10.1002/elan.201200053

W. Su, S. Wang, and S. Cheng, Electrochemically pretreated screen-printed carbon electrodes for the simultaneous determination of aminophenol isomers, Journal of Electroanalytical Chemistry, vol.651, issue.2, pp.166-172, 2011.
DOI : 10.1016/j.jelechem.2010.11.028

A. Hayat, L. Barthelmebs, and J. L. Marty, Electrochemical impedimetric immunosensor for the detection of okadaic acid in mussel sample, Sensors and Actuators B: Chemical, vol.171, issue.172, pp.810-815, 2012.
DOI : 10.1016/j.snb.2012.05.075

A. Hayat, A. Sassolas, J. L. Marty, and A. Radi, Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry, Talanta, vol.103, pp.14-19, 2013.
DOI : 10.1016/j.talanta.2012.09.048

Z. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei et al., Toward the Development of Printable Nanowire Electronics and Sensors, Javey, A. Toward the Development of Printable Nanowire Electronics and Sensors, pp.3730-3743, 2009.
DOI : 10.1002/adma.200900860

M. Khairy, R. O. Kadara, and C. Banks, Electroanalytical sensing of nitrite at shallow recessed screen printed microelectrode arrays, Analytical Methods, vol.8, issue.7, pp.851-854, 2010.
DOI : 10.1039/c0ay00142b

R. O. Kadara, N. Jenkinson, and C. E. Banks, Screen printed recessed microelectrode arrays, Sensors and Actuators B: Chemical, vol.142, issue.1, pp.342-346, 2009.
DOI : 10.1016/j.snb.2009.08.005

P. Fanjul-bolado, D. Herná-ndez-santos, and P. J. Lamas-ardisana, Electrochemical characterization of screen-printed and conventional carbon paste electrodes, Electrochimica Acta, vol.53, issue.10, pp.3635-3642, 2008.
DOI : 10.1016/j.electacta.2007.12.044

B. ?ljuki?, N. A. Malakhova, K. Z. Brainina, C. E. Banks, and R. G. Compton, Screen Printed Electrodes and Screen Printed Modified Electrodes Benefit from Insonation, Electroanalysis, vol.6, issue.9, pp.928-930, 2006.
DOI : 10.1002/elan.200603504

N. A. Choudhry, D. K. Kampouris, R. O. Kadara, N. Jenkinson, and C. Banks, Next generation screen printed electrochemical platforms: Non-enzymatic sensing of carbohydrates using copper(ii) oxide screen printed electrodes, Analytical Methods, vol.123, issue.3, pp.183-187, 2009.
DOI : 10.1039/b9ay00095j

N. A. Choudhry, R. O. Kadara, N. Jenkinson, and C. Banks, Screen printed electrodes provide micro-domain sites for fabricating disposable electro-catalytic ensembles, Electrochemistry Communications, vol.12, issue.3, pp.406-409, 2010.
DOI : 10.1016/j.elecom.2010.01.005

C. E. Banks and R. G. Compton, New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite, The Analyst, vol.17, issue.1, pp.15-21, 2006.
DOI : 10.1039/B512688F

C. E. Banks, A. Crossley, C. Salter, S. J. Wilkins, and R. G. Compton, Carbon Nanotubes Contain Metal Impurities Which Are Responsible for the ???Electrocatalysis??? Seen at Some Nanotube-Modified Electrodes, Angewandte Chemie International Edition, vol.16, issue.16, pp.2533-2537, 2006.
DOI : 10.1002/anie.200600033

K. Shi and K. Shiu, Determination of Uric Acid at Electrochemically Activated Glassy Carbon Electrode, Electroanalysis, vol.429, issue.16, pp.1319-1325, 2001.
DOI : 10.1002/1521-4109(200111)13:16<1319::AID-ELAN1319>3.0.CO;2-C

J. C. Chen, H. H. Chung, C. T. Hsu, D. M. Tsai, A. S. Kumar et al., A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood, Sensors and Actuators B: Chemical, vol.110, issue.2, pp.364-369, 2005.
DOI : 10.1016/j.snb.2005.02.026

T. Tsai, S. Thiagarajan, and S. Chen, Detection of Melamine in Milk Powder and Human Urine, Journal of Agricultural and Food Chemistry, vol.58, issue.8, pp.4537-4544, 2010.
DOI : 10.1021/jf904554s

T. Yang, C. Hung, J. Ke, and J. Zen, An electrochemically preanodized screen-printed carbon electrode for achieving direct electron transfer to glucose oxidase, Electrochemistry Communications, vol.10, issue.7, pp.1094-1097, 2008.
DOI : 10.1016/j.elecom.2008.05.020

J. Zen, A. Senthillkumar, and D. Tsai, Recent Updates of Chemically Modified Electrodes in Analytical Chemistry, Electroanalysis, vol.15, issue.13, pp.1073-1087, 2003.
DOI : 10.1002/elan.200390130

B. R. Kozub and R. G. Compton, Voltammetric studies of the redox mediator, cobalt phthalocyanine, with regard to its claimed electrocatalytic properties, Sensors and Actuators B: Chemical, vol.147, issue.1, pp.350-358, 2010.
DOI : 10.1016/j.snb.2010.02.062

J. Ping, J. Wu, and Y. Ying, Development of an ionic liquid modified screen-printed graphite electrode and its sensing in determination of dopamine, Electrochemistry Communications, vol.12, issue.12, pp.1738-1741, 2010.
DOI : 10.1016/j.elecom.2010.10.010

R. Ren, C. Leng, and S. Zhang, A chronocoulometric DNA sensor based on screen-printed electrode doped with ionic liquid and polyaniline nanotubes, Biosensors and Bioelectronics, vol.25, issue.9, pp.2089-2094, 2010.
DOI : 10.1016/j.bios.2010.02.006

P. J. Lamas-ardisana, P. Queipo, and P. Fanjul-bolado, Multiwalled carbon nanotube modified screen-printed electrodes for the detection of p-aminophenol: Optimisation and application in alkaline phosphatase-based assays, Analytica Chimica Acta, vol.615, issue.1, pp.30-38, 2008.
DOI : 10.1016/j.aca.2008.03.034

J. Wang, N. Naser, L. Angnes, H. Wu, and L. Chen, Metal-dispersed carbon paste electrodes, Analytical Chemistry, vol.64, issue.11, pp.1285-1288, 1992.
DOI : 10.1021/ac00035a016

J. Wang, Stripping Analysis at Bismuth Electrodes: A Review, Electroanalysis, vol.37, issue.15-16, pp.1341-1346, 2005.
DOI : 10.1002/elan.200403270

A. Economou, Bismuth-film electrodes: recent developments and potentialities for electroanalysis, TrAC Trends in Analytical Chemistry, vol.24, issue.4, pp.334-340, 2005.
DOI : 10.1016/j.trac.2004.11.006

R. Koncki and M. Mascini, Screen-printed ruthenium dioxide electrodes for pH measurements, Analytica Chimica Acta, vol.351, issue.1-3, pp.143-149, 1997.
DOI : 10.1016/S0003-2670(97)00367-X

P. M. Hallam, D. K. Kampouris, R. O. Kadara, N. Jenkinson, and C. E. Banks, Nickel oxide screen printed electrodes for the sensing of hydroxide ions in aqueous solutions, Analytical Methods, vol.21, issue.8, pp.1152-1155, 2010.
DOI : 10.1039/c0ay00179a

D. K. Kampouris, R. O. Kadara, N. Jenkinson, and C. Banks, Screen printed electrochemical platforms for pH sensing, Analytical Methods, vol.8, issue.1, pp.25-28, 2009.
DOI : 10.1039/b9ay00025a

S. Betelu, K. Polychronopoulou, and C. Rebholz, Novel CeO2-based screen-printed potentiometric electrodes for pH monitoring, Talanta, vol.87, pp.126-135, 2011.
DOI : 10.1016/j.talanta.2011.09.051

URL : https://hal.archives-ouvertes.fr/hal-00665325

L. Xiong, C. Batchelor-mcauley, and R. G. Compton, Calibrationless pH sensors based on nitrosophenyl and ferrocenyl co-modified screen printed electrodes, Sensors and Actuators B: Chemical, vol.159, issue.1, pp.251-255, 2011.
DOI : 10.1016/j.snb.2011.06.082

J. Zen, Y. Song, H. Chung, C. Hsu, and A. Kumar, Photoelectrochemical Oxygen Sensor Using Copper-Plated Screen-Printed Carbon Electrodes, Analytical Chemistry, vol.74, issue.23, pp.6126-6130, 2002.
DOI : 10.1021/ac020058r

R. Zheng, Y. Fang, S. Qin, J. Song, A. Wu et al., A dissolved oxygen sensor based on hot electron induced cathodic electrochemiluminescence at a disposable CdS modified screen-printed carbon electrode, Sensors and Actuators B: Chemical, vol.157, issue.2, pp.488-493, 2011.
DOI : 10.1016/j.snb.2011.05.005

J. Chang and J. Zen, A poly(dimethylsiloxane)-based electrochemical cell coupled with disposable screen printed edge band ultramicroelectrodes for use in flow injection analysis, Electrochemistry Communications, vol.9, issue.12, pp.2744-2750, 2007.
DOI : 10.1016/j.elecom.2007.09.014

J. P. Metters, R. O. Kadara, and C. Banks, Electroanalytical properties of screen printed graphite microband electrodes, Sensors and Actuators B: Chemical, vol.169, pp.136-143, 2012.
DOI : 10.1016/j.snb.2012.04.045

C. Lin, V. S. Vasantha, and K. Ho, Detection of nitrite using poly(3,4-ethylenedioxythiophene) modified SPCEs, Sensors and Actuators B: Chemical, vol.140, issue.1, pp.51-57, 2009.
DOI : 10.1016/j.snb.2009.04.047

M. Muchindu, T. Waryo, O. Arotiba, E. Kazimierska, A. Morrin et al., Electrochemical nitrite nanosensor developed with amine- and sulphate-functionalised polystyrene latex beads self-assembled on polyaniline, Electrochimica Acta, vol.55, issue.14, pp.4274-4280, 2010.
DOI : 10.1016/j.electacta.2009.06.047

C. Lin, A. Balamurugan, Y. Lai, and K. Ho, A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation, Talanta, vol.82, issue.5, pp.1905-1911, 2010.
DOI : 10.1016/j.talanta.2010.08.010

B. R. Sljukic, R. O. Kadara, and C. Banks, Disposable manganese oxide screen printed electrodes for electroanalytical sensing, Anal. Methods, vol.638, issue.10, pp.105-109, 2011.
DOI : 10.1039/C0AY00444H

E. Khaled, H. N. Hassan, A. Girgis, and R. Metelka, Construction of novel simple phosphate screen-printed and carbon paste ion-selective electrodes, Talanta, vol.77, issue.2, pp.737-743, 2008.
DOI : 10.1016/j.talanta.2008.07.018

A. Muller, T. Brinz, and U. Simon, Preparation and Measurement of Combinatorial Screen Printed Libraries for the Electrochemical Analysis of Liquids, Journal of Combinatorial Chemistry, vol.11, issue.1, pp.138-180, 2009.
DOI : 10.1021/cc800123v

S. I. Malha, J. Mandli, and A. Ourari, Amine, A. Carbon Black-Modified Electrodes as Sensitive Tools for the Electrochemical Detection of Nitrite and Nitrate, Electroanalysis, vol.25, pp.2289-2297, 2013.

L. Gilbert, A. T. Jenkins, S. Browning, and J. P. Hart, Development of an amperometric assay for phosphate ions in urine based on a chemically modified screen-printed carbon electrode, Analytical Biochemistry, vol.393, issue.2, pp.242-247, 2009.
DOI : 10.1016/j.ab.2009.06.038

L. Gilbert, A. T. Jenkins, S. Browning, and J. P. Hart, Development of an amperometric, screen-printed, single-enzyme phosphate ion biosensor and its application to the analysis of biomedical and environmental samples, Sensors and Actuators B: Chemical, vol.160, issue.1, pp.1322-1327, 2011.
DOI : 10.1016/j.snb.2011.09.069

N. Karousos, L. C. Chong, C. Ewen, C. Livingstone, and J. Davis, Evaluation of a multifunctional indicator for the electroanalytical determination of nitrite, Electrochimica Acta, vol.50, issue.9, pp.1879-1884, 2005.
DOI : 10.1016/j.electacta.2004.08.049

D. Quan, J. H. Shim, J. D. Kim, H. S. Park, G. S. Cha et al., Electrochemical Determination of Nitrate with Nitrate Reductase-Immobilized Electrodes under Ambient Air, Analytical Chemistry, vol.77, issue.14, pp.4467-4473, 2005.
DOI : 10.1021/ac050198b

N. Plumeré, J. Henig, and W. Campbell, Removal System for Electrochemical Analysis under Ambient Air: Application in an Amperometric Nitrate Biosensor, Analytical Chemistry, vol.84, issue.5, pp.2141-2146, 2012.
DOI : 10.1021/ac2020883

M. F. Brugnera, M. A. Trindade, and M. V. Zanoni, Detection of Bisphenol A on a Screen-Printed Carbon Electrode in CTAB Micellar Medium, Analytical Letters, vol.18, issue.18, pp.2823-2836, 2010.
DOI : 10.1016/j.microc.2007.10.003

D. Li, D. Li, J. S. Fossey, and Y. Long, Portable Surface-Enhanced Raman Scattering Sensor for Rapid Detection of Aniline and Phenol Derivatives by On-Site Electrostatic Preconcentration, Analytical Chemistry, vol.82, issue.22, pp.9299-9305, 2010.
DOI : 10.1021/ac101812x

W. Song, D. Li, Y. Li, Y. Li, and Y. Long, Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles, Biosensors and Bioelectronics, vol.26, issue.7, pp.3181-3186, 2011.
DOI : 10.1016/j.bios.2010.12.022

R. S. Alkasir, M. Ganesana, Y. Won, L. Stanciu, and S. Andreescu, Enzyme functionalized nanoparticles for electrochemical biosensors: A comparative study with applications for the detection of bisphenol A, Biosensors and Bioelectronics, vol.26, issue.1, pp.43-49, 2010.
DOI : 10.1016/j.bios.2010.05.001

P. Ibarra-escutia, J. J. Gómez, C. Calas-blanchard, J. L. Marty, and M. T. Ramí-rez-silva, Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions, Talanta, vol.81, issue.4-5, pp.1636-1642, 2010.
DOI : 10.1016/j.talanta.2010.03.017

B. Oujji, N. Bakas, I. Istamboulié, G. Ait-ichou, I. Ait-addi et al., Acetylcholinesterase Immobilized on Magnetic Beads for Pesticides Detection: Application to Olive Oil Analysis, Sensors, vol.12, issue.12, pp.7893-7904, 2012.
DOI : 10.3390/s120607893

N. Gan, X. Yang, D. Xie, Y. Wu, and W. Wen, A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode, Sensors, vol.10, issue.1, pp.625-638, 2010.
DOI : 10.3390/s100100625

G. Istamboulie, T. Sikora, E. Jubete, E. Ochoteco, J. Marty et al., Screen-printed poly(3,4-ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based biosensors, Talanta, vol.82, issue.3, pp.957-961, 2010.
DOI : 10.1016/j.talanta.2010.05.070

Y. Won, H. S. Jang, S. M. Kim, E. Stach, M. Ganesana et al., Biomagnetic Glasses: Preparation, Characterization, and Biosensor Applications, Langmuir, vol.26, issue.6, pp.4320-4326, 2009.
DOI : 10.1021/la903422q

F. Arduini, F. Ricci, C. S. Tuta, D. Moscone, A. Amine et al., Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode, Analytica Chimica Acta, vol.580, issue.2, pp.155-162, 2006.
DOI : 10.1016/j.aca.2006.07.052

J. Kumar and S. F. Souza, Microbial biosensor for detection of methyl parathion using screen printed carbon electrode and cyclic voltammetry, Biosensors and Bioelectronics, vol.26, issue.11, pp.4289-4293, 2011.
DOI : 10.1016/j.bios.2011.04.027

D. E. Baskeyfield, F. Davis, and N. Magan, A membrane-based immunosensor for the analysis of the herbicide isoproturon, Analytica Chimica Acta, vol.699, issue.2, pp.223-231, 2011.
DOI : 10.1016/j.aca.2011.05.036

Y. Nangia, V. Bhalla, B. Kumar, and C. R. Suri, Electrochemical stripping voltammetry of gold ions for development of ultra-sensitive immunoassay for chlorsulfuron, Electrochemistry Communications, vol.14, issue.1, pp.2012-51
DOI : 10.1016/j.elecom.2011.10.025

V. Bhalla and V. Zazubovich, Self-assembly and sensor response of photosynthetic reaction centers on screen-printed electrodes, Analytica Chimica Acta, vol.707, issue.1-2, pp.184-190, 2011.
DOI : 10.1016/j.aca.2011.09.020

I. Shitanda, S. Takamatsu, K. Watanabe, and M. Itagaki, Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds, Electrochimica Acta, vol.54, issue.21, pp.4933-4936, 2009.
DOI : 10.1016/j.electacta.2009.04.005

A. I. Zamaleeva, I. R. Sharipova, R. V. Shamagsumova, A. N. Ivanov, G. A. Evtugyn et al., A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes, Analytical Methods, vol.20, issue.3, pp.509-513, 2011.
DOI : 10.1007/s00216-010-4241-3

P. Leyton, J. S. Gómez-jeria, S. Sanchez-cortes, C. Domingo, and M. Campos-vallette, Carbon Nanotube Bundles as Molecular Assemblies for the Detection of Polycyclic Aromatic Hydrocarbons:?? Surface-Enhanced Resonance Raman Spectroscopy and Theoretical Studies, The Journal of Physical Chemistry B, vol.110, issue.13
DOI : 10.1021/jp056379z

K. C. Honeychurch, J. P. Hart, and N. Kirsch, Voltammetric, chromatographic and mass spectral elucidation of the redox reactions of 1-hydroxypyrene occurring at a screen-printed carbon electrode, Electrochimica Acta, vol.49, issue.7, pp.1141-1149, 2004.
DOI : 10.1016/j.electacta.2003.10.025

K. A. Fä-hnrich, M. Pravda, and G. G. Guilbault, Disposable amperometric immunosensor for the detection of polycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes, Biosensors and Bioelectronics, vol.18, issue.1, pp.73-82, 2003.
DOI : 10.1016/S0956-5663(02)00112-4

P. Masawat and J. M. Slater, The determination of tetracycline residues in food using a disposable screen-printed gold electrode (SPGE), Sensors and Actuators B: Chemical, vol.124, issue.1, pp.127-132, 2007.
DOI : 10.1016/j.snb.2006.12.010

S. Centi, A. I. Stoica, S. Laschi, and M. Mascini, Development of an Electrochemical Immunoassay Based on the Use of an Eight-Electrodes Screen-Printed Array Coupled with Magnetic Beads for the Detection of Antimicrobial Sulfonamides in Honey, Electroanalysis, vol.529, issue.16, pp.1881-1888, 2010.
DOI : 10.1002/elan.200900618

A. Crew, D. Lonsdale, N. Byrd, R. Pittson, and J. P. Hart, A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides, Biosensors and Bioelectronics, vol.26, issue.6, pp.2847-2851, 2011.
DOI : 10.1016/j.bios.2010.11.018

F. Arduini, S. Guidone, A. Amine, G. Palleschi, and D. Moscone, Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection, Sensors and Actuators B: Chemical, vol.179, pp.201-208, 2013.
DOI : 10.1016/j.snb.2012.10.016

G. A. Alonso, R. Muñoz, and J. Marty, Automatic Electronic Tongue for On-Line Detection and Quantification of Organophosphorus and Carbamate Pesticides Using Enzymatic Screen Printed Biosensors, Analytical Letters, vol.16, issue.11, pp.1743-1757, 2012.
DOI : 10.1002/elan.200900285

A. N. Ivanov, R. R. Younusov, G. A. Evtugyn, F. Arduini, D. Moscone et al., Acetylcholinesterase biosensor based on single-walled carbon nanotubes???Co phtalocyanine for organophosphorus pesticides detection, Talanta, vol.85, issue.1, pp.216-221, 2011.
DOI : 10.1016/j.talanta.2011.03.045

H. Li, J. Li, Z. Yang, Q. Xu, and X. Hu, A Novel Photoelectrochemical Sensor for the Organophosphorus Pesticide Dichlofenthion Based on Nanometer-Sized Titania Coupled with a Screen-Printed Electrode, Analytical Chemistry, vol.83, issue.13, pp.5290-5295, 2011.
DOI : 10.1021/ac200706k

C. C. Mayorga-martinez, M. Cadevall, M. Guix, J. Ros, and A. Merkoci, Bismuth nanoparticles for phenolic compounds biosensing application, Biosensors and Bioelectronics, vol.40, issue.1, pp.57-62, 2013.
DOI : 10.1016/j.bios.2012.06.010

C. Mayorga, F. Pino, S. Kurbanoglua, L. Rivas, S. A. Ozkan et al., Iridium oxide nanoparticle induced dual catalytic/inhibition based detection of phenol and pesticide compounds, Journal of Materials Chemistry B, vol.9, issue.218, pp.2233-2239, 2014.
DOI : 10.1039/c3tb21765e

S. Nadifiyine, M. Haddam, J. Mandli, S. Chadel, C. C. Blanchard et al., Amperometric Biosensor Based on Tyrosinase Immobilized on to a Carbon Black Paste Electrode for Phenol Determination in Olive Oil, Analytical Letters, vol.612, issue.2, pp.2705-2726, 2013.
DOI : 10.1007/s00604-007-0768-1

L. Lu, L. Zhang, X. Zhang, S. Huan, G. Shen et al., A novel tyrosinase biosensor based on hydroxyapatite???chitosan nanocomposite for the detection of phenolic compounds, Analytica Chimica Acta, vol.665, issue.2, pp.146-151, 2010.
DOI : 10.1016/j.aca.2010.03.033

E. Moczko, G. Istamboulie, C. Calas-blanchard, R. Rouillon, and T. Noguer, Biosensor employing screen-printed PEDOT:PSS for sensitive detection of phenolic compounds in water, Journal of Polymer Science Part A: Polymer Chemistry, vol.23, issue.11, pp.2286-2292
DOI : 10.1002/pola.26009

Y. Chai, X. Niu, C. Chen, H. Zhao, and M. Lan, Carbamate Insecticide Sensing Based on Acetylcholinesterase/Prussian Blue-Multi-Walled Carbon Nanotubes/Screen-Printed Electrodes, Analytical Letters, vol.46, issue.5, pp.803-817, 2013.
DOI : 10.1016/j.talanta.2008.06.010

F. Arduini, J. Q. Calvo, G. Palleschi, D. Moscone, and A. Amine, Bismuth-modified electrodes for lead detection, TrAC Trends in Analytical Chemistry, vol.29, issue.11, pp.1295-1304, 2010.
DOI : 10.1016/j.trac.2010.08.003

O. Krystofova, L. Trnkova, V. Adam, J. Zehnalek, J. Hubalek et al., Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants, Sensors, vol.10, issue.6, pp.5308-5328, 2010.
DOI : 10.3390/s100605308

K. C. Honeychurch, S. Berezanchi, and J. P. Hart, The voltammetric behaviour of lead at a microband screen-printed carbon electrode and its determination in acetate leachates from glazed ceramic plates, Talanta, vol.84, issue.3, pp.717-723, 2011.
DOI : 10.1016/j.talanta.2011.01.073

D. Mazumdar, J. Liu, G. Lu, J. Zhou, and Y. Lu, Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle???DNAzyme conjugates, Chemical Communications, vol.42, issue.9, pp.1416-1418, 2010.
DOI : 10.1039/b917772h

O. Zaouak, L. Authier, C. Cugnet, and A. Castetbon, Electroanalytical Device for Cadmium Speciation in Waters. Part???1: Development and Characterization of a Reliable Screen-Printed Sensor, Electroanalysis, vol.19, issue.11, pp.1151-1158, 2010.
DOI : 10.1002/elan.200900474

S. Betelu, C. Parat, N. Petrucciani, A. Castetbon, and L. Authier, Semicontinuous Monitoring of Cadmium and Lead with a Screen-Printed Sensor Modified by a Membrane, Electroanalysis, vol.69, issue.574, pp.399-402, 2007.
DOI : 10.1002/elan.200603722

URL : https://hal.archives-ouvertes.fr/hal-01444588

A. Giacomino, O. Abollino, M. Malandrino, and E. Mentasti, Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode, Talanta, vol.75, pp.266-273, 2008.
DOI : 10.1016/j.talanta.2007.11.015

J. Gong, T. Zhou, D. Song, L. Zhang, and X. Hu, Stripping Voltammetric Detection of Mercury(II) Based on a Bimetallic Au???Pt Inorganic???Organic Hybrid Nanocomposite Modified Glassy Carbon Electrode, Analytical Chemistry, vol.82, issue.2, pp.567-573, 2009.
DOI : 10.1021/ac901846a

E. Bernalte, C. M. Sá-nchez, and E. P. Gil, Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes, Analytica Chimica Acta, vol.689, issue.1, pp.60-64, 2011.
DOI : 10.1016/j.aca.2011.01.042

V. S. Somerset, L. H. Hernandez, and E. Iwuoha, Stripping voltammetric measurement of trace metal ions using screen-printed carbon and modified carbon paste electrodes on river water from the Eerste-Kuils River System, Journal of Environmental Science and Health, Part A, vol.90, issue.8, pp.17-32, 2010.
DOI : 10.1016/j.aca.2008.06.010

S. Sanllorente-mé-ndez, O. Domí-nguez-renedo, and M. J. Arcos-martí-nez, Determination of Arsenic(III) Using Platinum Nanoparticle-Modified Screen-Printed Carbon-Based Electrodes, Electroanalysis, vol.577, issue.3-5, pp.635-639, 2009.
DOI : 10.1002/elan.200804389

S. Sanllorente-mé-ndez and O. Domí-nguez-renedo, Immobilization of Acetylcholinesterase on Screen-Printed Electrodes. Application to the Determination of Arsenic(III), Sensors, vol.10, issue.3, pp.2119-2128, 2010.
DOI : 10.3390/s100302119

A. Mandil, L. Idrissi, and A. Amine, Stripping voltammetric determination of mercury(II) and lead(II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles, Microchimica Acta, vol.5, issue.7-8, pp.299-305, 2010.
DOI : 10.1007/s00604-010-0329-x

M. Maczuga, A. Economou, and A. Bobrowski, Novel screen-printed antimony and tin voltammetric sensors for anodic stripping detection of Pb(II) and Cd(II), Electrochimica Acta, vol.114, pp.758-765, 2013.
DOI : 10.1016/j.electacta.2013.10.075

C. Andreuccetti, F. Bettazzi, C. Giorgi, S. Laschi, G. Marrazza et al., Macrocyclic Polyamine Modified Screen-Printed Electrodes for Copper(II) Detection, pp.471-474, 2014.
DOI : 10.1007/978-1-4614-3860-1_84

URL : http://doi.org/10.1007/978-1-4614-3860-1_84

S. Bouden, N. Bellakhal, and A. Chaussé, Vautrin-Ul, C. Performances of carbon-based screen-printed electrodes modified by diazonium salts with various carboxylic functions for trace metal sensors, Electrochem. Commun, vol.41, pp.2014-68

C. Chen, X. Niu, Y. Chai, H. Zhao, and M. Lan, Bismuth-based porous screen-printed carbon electrode with enhanced sensitivity for trace heavy metal detection by stripping voltammetry, Sensors and Actuators B: Chemical, vol.178, pp.339-342, 2013.
DOI : 10.1016/j.snb.2012.12.109

J. Jian, Y. Liu, Y. Zhang, X. Guo, and Q. Cai, Fast and Sensitive Detection of Pb2+ in Foods Using Disposable Screen-Printed Electrode Modified by Reduced Graphene Oxide, Sensors, vol.13, issue.10, pp.13063-13075, 2013.
DOI : 10.3390/s131013063

L. Fu, X. Li, J. Yu, and J. Ye, Facile and Simultaneous Stripping Determination of Zinc, Cadmium and Lead on Disposable Multiwalled Carbon Nanotubes Modified Screen-Printed Electrode, Electroanalysis, vol.130, issue.2, pp.567-572, 2013.
DOI : 10.1002/elan.201200248

Y. Wei, R. Yang, J. Liu, and X. Huang, Selective detection toward Hg(II) and Pb(II) using polypyrrole/carbonaceous nanospheres modified screen-printed electrode, Electrochimica Acta, vol.105, pp.218-223, 2013.
DOI : 10.1016/j.electacta.2013.05.004

M. Gich, C. Fernandez-sanchez, L. C. Cotet, P. Niu, and A. Roig, Facile synthesis of porous bismuth???carbon nanocomposites for the sensitive detection of heavy metals, Journal of Materials Chemistry A, vol.622, issue.37, pp.11410-11418, 2013.
DOI : 10.1039/c3ta12190a

C. Chen, X. Niu, Y. Chai, H. Zhao, M. Lan et al., Determination of Lead(II) Using Screen-Printed Bismuth-Antimony Film Electrode, Electroanalysis, vol.12, issue.167, pp.1446-1452, 2013.
DOI : 10.1002/elan.201200625

S. Bouden, A. Chaussé, S. Dorbes, O. Tall, N. Bellakhal et al., Trace lead analysis based on carbon-screen-printed-electrodes modified via 4-carboxy-phenyl diazonium salt electroreduction, Talanta, vol.106, pp.414-421, 2013.
DOI : 10.1016/j.talanta.2013.01.021

E. Punrat, S. Chuanuwatanakul, T. Kaneta, S. Motomizu, and O. Chailapakul, Method development for the determination of arsenic by sequential injection/anodic stripping voltammetry using long-lasting gold-modified screen-printed carbon electrode, Talanta, vol.116, pp.1018-1025, 2013.
DOI : 10.1016/j.talanta.2013.08.030

M. Khairy, D. K. Kampouris, R. O. Kadara, and C. E. Banks, Gold Nanoparticle Modified Screen Printed Electrodes for the Trace Sensing of Arsenic(III) in the Presence of Copper(II), Electroanalysis, vol.589, issue.21, pp.2496-2501, 2010.
DOI : 10.1002/elan.201000226

G. Aragay, J. Pons, and A. Merkoci, Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes, Journal of Materials Chemistry, vol.13, issue.12, pp.4326-4331, 2011.
DOI : 10.1039/c0jm03751f

E. Bernalte, C. Marí-n-sá-nchez, and E. Gil, Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples, Sensors and Actuators B: Chemical, vol.161, issue.1, pp.669-674, 2012.
DOI : 10.1016/j.snb.2011.10.088

W. Song, L. Zhang, L. Shi, D. Li, Y. Li et al., Simultaneous determination of cadmium(II), lead(II) and copper(II) by using a screen-printed electrode modified with mercury nano-droplets, Microchimica Acta, vol.18, issue.574, pp.321-326, 2010.
DOI : 10.1007/s00604-010-0354-9

H. Fang, H. Zheng, M. Ou, Q. Meng, D. Fan et al., One-step sensing lead in surface waters with screen printed electrode, Sensors and Actuators B: Chemical, vol.153, issue.2, pp.369-372, 2011.
DOI : 10.1016/j.snb.2010.10.049

C. Henrí-quez, L. M. Laglera, M. J. Alpizar, J. Calvo, F. Arduini et al., Cadmium determination in natural water samples with an automatic multisyringe flow injection system coupled to a flow-through screen printed electrode, Talanta, vol.96, pp.140-146, 2012.
DOI : 10.1016/j.talanta.2012.01.032

A. Morata, J. P. Viricelle, A. Tarancón, G. Dezanneau, C. Pijolat et al., Development and characterisation of a screen-printed mixed potential gas sensor, Sensors and Actuators B: Chemical, vol.130, pp.561-566, 2008.
DOI : 10.1016/j.snb.2007.09.086

URL : https://hal.archives-ouvertes.fr/emse-00431555

C. Chou, J. Chang, and J. Zen, Effective analysis of gaseous formaldehyde based on a platinum-deposited screen-printed edge band ultramicroelectrode coated with Nafion as solid polymer electrolyte, Sensors and Actuators B: Chemical, vol.147, issue.2, pp.669-675, 2010.
DOI : 10.1016/j.snb.2010.03.090

J. W. Fergus, Materials for High Temperature Electrochemical NOx Gas Sensors, ChemInform, vol.121, issue.24, pp.652-663, 2007.
DOI : 10.1002/chin.200724220

H. Mbarek and M. Saadoun, Porous screen printed indium tin oxide (ITO) for NOx gas sensing, physica status solidi (c), vol.94, issue.6, pp.1903-1907, 2007.
DOI : 10.1002/pssc.200674315

R. S. Khadayate, J. V. Sali, and P. P. Patil, Acetone vapor sensing properties of screen printed WO3 thick films, Talanta, vol.72, issue.3, pp.1077-1081, 2007.
DOI : 10.1016/j.talanta.2006.12.043

C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J. M. Kenny et al., NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition, Sensors and Actuators B: Chemical, vol.93, issue.1-3, pp.333-337, 2003.
DOI : 10.1016/S0925-4005(03)00224-7

Y. Lin, S. Chen, Y. Chuang, Y. Lu, T. Y. Shen et al., Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7, Biosensors and Bioelectronics, vol.23, issue.12, pp.1832-1837, 2008.
DOI : 10.1016/j.bios.2008.02.030

D. Mata, D. Bejarano, M. L. Botero, P. Lozano, and M. Constantí, Screen-printed integrated microsystem for the electrochemical detection of pathogens, Electrochimica Acta, vol.55, issue.14, pp.4261-4266, 2010.
DOI : 10.1016/j.electacta.2009.03.001

V. T. Kostaki, A. B. Florou, and M. I. Prodromidis, Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium, Electrochimica Acta, vol.56, issue.24, pp.8857-8860, 2011.
DOI : 10.1016/j.electacta.2011.07.092

S. Betelu, C. Vautrin-ul, J. Ly, and A. Chaussé, Screen-printed electrografted electrode for trace uranium analysis, Talanta, vol.80, issue.1, pp.372-376, 2009.
DOI : 10.1016/j.talanta.2009.06.076