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Abstract: Screen printing technology is a widely used technique for the fabrication of 

electrochemical sensors. This methodology is likely to underpin the progressive drive 

towards miniaturized, sensitive and portable devices, and has already established its route 

from ―lab-to-market‖ for a plethora of sensors. The application of these sensors for analysis 

of environmental samples has been the major focus of research in this field. As a 

consequence, this work will focus on recent important advances in the design and 

fabrication of disposable screen printed sensors for the electrochemical detection of 

environmental contaminants. Special emphasis is given on sensor fabrication methodology, 

operating details and performance characteristics for environmental applications. 

Keywords: screen printed electrode; fabrication methods; sensors; electrochemical 

detection; environmental investigation 

 

1. Introduction 

A major part of analytical research activity is devoted to the development of new and robust 

methodologies. For example, new analytical tools are required for economical and real time monitoring 

of environmental pollutants, and for prevention of toxic materials in the environment. Progress in the 

field of analytical chemistry is aimed at bringing the analytical data close to the production  
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operations [1–3]. Such advances offer improved analytical methods with reduced environmental impact. A 

real time field detection system is highly desirable for continuous environmental monitoring to overcome 

the limitations such as sample collection and transport to a central laboratory, problems associated with 

commonly used methods for environmental pollutants. In this context, real time methods offer a rapid return 

of the chemical profile (alarm tools for sudden discharge) with minimized errors and costs as compared to 

the offsite laboratory-based analyses [1]. The development of portable approaches and devices with 

reduced sample volume is of considerable interest for both centralized and decentralized (field) 

analyses. This review paper highlights recent advances, primarily from the authors’ laboratories, aimed 

at designing electrochemical systems for meeting the needs of analytical chemistry. Electrochemical 

devices offer unique properties to address the challenges of analytical chemistry. The advantages of 

electrochemical devices include possibility of miniaturization and portability, sensitivity, selectivity, a 

wide linear range, minimal space and power requirement and cost effective instrumentation. Devices 

based on the electrochemical detection are well established for many years. The past decades have seen 

enormous progress in electro-analytical chemistry with the development of ultra-microelectrodes, tailored 

interfaces, molecular devices and smart sensors. These developments have resulted in substantial popularity 

of electro-analyses and to their expansion into new phases and environments [4,5]. 

As we enter the 21 century, we do not want to rely on cumbersome electrochemical cells and bulky 

electrodes but rather would like to have fast, small, easy to use, portable, economical and disposable 

electrode systems. A vast array of electrodes for on site and in situ environmental monitoring has been 

developed during recent years [6–10]. Several representative examples, illustrating the scope, power, 

versatility and application of such miniaturized electrodes for environmental monitoring are described 

in the coming sections. This review paper as whole will focus on the trends in screen printed electrode 

design, screen printed electrode fabrication processes, types of screen printed electrodes and finally 

their environmental applications. 

2. Towards Easy to Use, Disposable and Portable Screen Printed Electrodes 

The elimination of bulky materials and instruments from the analytical protocol is a major thrust of 

analytical chemistry. The performance of analytical methods is directly related to the material of the 

working electrode. For many years, mercury was used as the most suitable electrode material due to its 

very attractive behavior and highly reproducible, renewable and smooth surface. These distinct 

properties of the mercury drop electrode led to the Nobel Prize in Chemistry awarded to Heyerovský in 

1959. Both doping and hanging electrodes have been widely used in various polarographic and 

electrochemical techniques [1]. With the advancements in electro-analytical science, various non-mercury 

electrodes have also been examined. For example, bismuth and carbon electrodes started to be used in 

electro-analysis more than three decades ago due to their low background current, wide potential range, 

chemical inertness and suitability for various sensing and detection applications [11–13]. Recently, 

miniaturization of the solid electrodes was used to get several fundamental and practical advantages 

including such as a dramatic reduction in sample volume, portability and cost effectiveness. To address 

the needs of on-site analysis, it was necessary to move away from the commonly used cumbersome 

electrodes and cells. The exploitation of new fabrication techniques allows the replacement of 

traditional beaker type electrochemical cells and bulky electrodes with easy to use sensors. Fabrication 
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of printed devices on bendable substrates has enabled the development of a wide range of new 

electrode systems. Screen printing technology is a well established technique for the fabrication of 

economical, portable and disposable electrode systems [14,15]. The whole electrode system, including 

reference, counter and working electrodes can be printed on the same substrate surface [8] (Figure 1).  

One prominent commercialization of screen printed electrode is the glucose biosensor used for diabetes 

which represents a billion dollar per year global market [16–18]. Society is in constant state of growth and 

development, and it is evident that demands for sensing devices related to the environment will increase 

with the passage of time. In order to achieve this, accurate, portable and rapid devices are highly needed. 

Decentralized analyses are necessary and thus traditional analytical methods cannot cope with  

these requirements. 

Figure 1. Design of a disposable and portable screen printed electrode (with reference, 

working and auxiliary electrodes on the same substrate) (IMAGES, Perpignan, France). 

 

Screen printed electrodes not only address the issue of cost effectiveness but also satisfy the requirement 

of portability, a progress towards decentralized analysis. The adaptability of screen printed electrodes is of 

vital importance in the area of research, the ability to modify electrodes with ease through different inks 

commercially available for the reference, counter and working electrode, allows for highly specific and 

finally calibrated electrodes to be produced for specific target analytes [8,19,20]. Many kinds of screen 

printed electrode modifiers exist for environmental monitoring such as noble metals, inorganic 

nanomaterials, proteins, enzymes and DNA sequences [21]. Screen printed electrodes combine the 

properties of ease of use and portability with simple, inexpensive analytical methods [22,23]. Consequently, 

screen printed electrodes can be easily adapted to in situ environmental monitoring to achieve improved 

performance, as has been demonstrated over the past several years. 

3. Working Principle of a Screen Printed Electrochemical Sensor 

Screen printed methodology offers an attractive way to design new generation electrochemical 

sensors. Scientists from across different fields have shown their interest in designing low cost and 

reliable screen printed electrochemical sensors. A detailed description of screen printed electrode 

fabrication methodology was already reported in a review paper by Li et al. [9]. Briefly, a screen 

printed electrode comprises a chemically inert substrate on which three electrodes, including working 

electrode, reference electrode and counter electrode, are printed through screen printing methodology. 

The working electrode is the principal electrode on which electrochemical reactions are performed, 

while the reference electrode and counter electrode are used to complete the electronic circuit. Figure 2 

represents the stepwise fabrication of a screen printed electrode. The chemical or biological event on 
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the screen printed electrode is converted into a detectable signal with the integration of a transducer 

element. Among the different transduction techniques, the electrochemical method of detection has 

attracted more interest for the design of low cost devices. Electrochemical methods of detection include 

amperometric (based on the current measurement), potentiometric (based on the voltage or potential 

differences) and conductometric (based on the conductivity or resistance). Among the electrochemical 

sensing techniques, amperometric detection is widely adopted due to its high sensitivity and applicability. 

Figure 2. Fabrication of a three electrode system. Chemically inert substrate; screen 

printing of working and auxiliary electrode; screen printing of reference electrode; screen 

printing of protection paste; working electrode incubation with the analyte of interest 

(IMAGES, Perpignan, France). 

 

The fabrication of an electrochemical screen printed sensor usually involves three steps: fabrication 

of the screen printed electrode, surface design of the screen printed electrode and subsequently 

utilization for a sensing application. The next section will focus on the fabrication strategies employed 

to design efficient electrochemical sensors in term of analytical characteristics. 

4. Dynamics of Screen Printed Electrochemical Sensors 

The inks used in screen printed electrode fabrication consist of particles, polymeric binder and other 

additives for improved dispersion, printing and adhesion process. The exact ink formulation and 

composition are patented by the respective companies, and are not disclosed to the users. The variation 

in the ink composition such as types, size or loading of particles strongly influence the electron transfer 

process and change the overall performance of the designed screen printed sensor [24–27]. However, 

screen printed electrodes surface can be very easily modified with a variety of materials and 

structurally related materials to compensate these limitations. Although these screen printed sensors 

have found widespread applications, the fundamental understanding of the electrochemical reactivity at 

the screen printed electrode is still rarely studied and addressed. In this regards, Sljukie et al. have 

shown that the performance of a macro-screen printed sensor can be improved by the use of ultrasound 

through increase in mass transport of the analyte and removal of surface active species. [28]  

Choudhry et al., have for the first time explored the fact that the electrode morphology can be changed 

dramatically by varying the concentration of the polymeric binder [29]. The same group has 

demonstrated that a bespoke screen printed electrode can be modified with electro-active palladium for 

the electrochemical oxidation of hydrazine where the unmodified electrode exhibited slow electron  
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transfer [30]. It has also been shown that non-linear diffusion over an electrode surface may affect the 

individual contributions of edge and basal plane materials, affecting the relative area of the electrode 

surfaces [31]. Recently, Choudhry and Banks have designed a screen printed electrode substrate modified 

with nickel nanoparticles supported on boron diamond. These nickel-modified electrodes were shown as a 

potential analytical tool for the detection of alcohols [32]. 

The other fundamental expect of understanding screen printed electrodes reactivity is to explore the 

creation of surface oxygen functionalities, and the use of mediators on the electrode surface [4]. The 

next section will highlight some of the important advances made on screen printed electrodes creating 

oxygen functionalities and edge plane like sites, along with some chemical modifications. 

4.1. Preanodized Screen Printed Carbon Electrode 

The research on several carbon materials, especially carbon nanotubes and graphene, has 

revolutionized the scope of screen printed electrodes in electro-analysis. Compton’s group observed 

enhanced electrocatalytic properties of CNT towards several target analytes attributed to the 

defect/edge plane-like sites [33,34]. Zen et al. demonstrated the creation of defect/edge-like sites and 

oxygen functionalities on the screen printed electrode surface through a simple pre-anodization process. 

Prasad et al. performed a comparative study on the role of oxygen functionalities and edge plane sites 

created achieved through a pre-anodization process and oxygen plasma treated screen printed electrodes [4]. 

Consequently, the pre-anodized electrode showed better characteristics in terms of reduction in 

overpotential and separation of oxidation peaks for the detection of uric acid and dopamine compared to the 

oxygen plasma-treated screen printed electrodes [35,36]. Similarly, the versatility of the pre-anodized 

screen printed electrode has been demonstrated in different media for enzymeless detection, detection 

of poorly electro-active analytes and direct electron transfer-related researches [37,38]. 

4.2. Mediator Integrated Screen Printed Electrode 

There are many target analytes which have no significant electroactivity or near impossible to get 

electrochemical signals. In such cases, the use of an electrocatalyst mediator and methodologies to improve 

the sensor performance are very common. The appropriate selection of the mediator can improve the 

selectivity and lower the working potential for electrocatalysis. Redox mediators such as metal/metal 

complexes and pure organic polymers can be used as electrode modifiers. The viable approaches to 

immobilize the mediator on the screen-printed electrode include drop casting, physical attachment, and 

covalent binding or mixing into carbon paste. The mediator mixing approach has found more applications, 

and has been the mainly used technique for many decades, since the pioneering work of Adams et al., 

Various types of mediators such as Meldola’s Blue, Prussian Blue, crown ethers, cobalt phthalocyanine and 

nickel hexacyanoferrate have been successfully integrated into the screen printed ink to design sensors for 

many target analytes. Ionic liquids have been used in analytical chemistry and carbon composites due to 

their physiochemical properties and biocompatible nature [39,40], but they were never been used in screen 

printed electrodes fabrication until the notable work by Ping et al., who incorporated a variety of ionic 

liquids into screen printed electrodes [41]. This work was further extended by Ren et al. in the fabrication of 

DNA sensors to achieve nano-level sensitivity [42]. Recently, carbon nanotubes-mediated screen printed 

electrodes have been used to increase the electrochemically active area of screen printed electrodes, 
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subsequently employed in the detection of p-aminophenol [43]. This work has provided a base to use other 

carbon nanotubes such as single walled carbon nanotubes and multi-walled carbon nanotube derivatives in 

designing screen printed carbon electrodes, with the possibility of accessing mass produced and 

reproducible nanotube-modified screen printed electrodes. 

4.3. Metal Oxide Based Screen Printed Electrodes 

Despite their various advantages, mediator approaches have the drawback of instability, and the fact 

they are not easily mass produced reproducibly, posing the problem of optimization of the sensors.  

As an alternative, metal oxides, including ruthenium oxide, copper oxide, nickel oxide, manganese 

oxide and bismuth oxide, have been used in the modification of electrodes [8,44], and the subsequently 

modified electrodes were used for many sensing applications. Among all the oxides, bismuth oxide is 

well documented to enhance the electro-analytical performance of the sensors, with reduced toxic 

effects. Since the pioneering work of Wang et al., bismuth-modified electrodes have been extensively 

explored for diverse applications. Bismuth nanopowder immobilized with Nafion, and electrochemically 

oxidized bismuth oxides are normally used to obtain a uniform layer of bismuth on the electrode 

surface. The electrochemical deposition of the target species on the bismuth layer rather than the 

underlying graphite electrode results in the improved analytical performance of the sensors. Bismuth 

domains, as preferential nucleation sites, are distributed across the electrode surface producing their 

own diffusion zones and minimizing the effect of surface coverage which may result in an increased 

electron transfer resistance thus reducing the sensor sensitivity [45,46]. An advantageous approach for 

screen printed electrode modification is the one in which any metal oxide can be readily incorporated 

onto an electrode surface, allowing a true platform technology. 

5. Screen Printed Sensors for Environmental Monitoring 

Screen printed electrodes have been employed as a tool to design disposable and portable 

electrochemical sensors for environmental monitoring, such as water quality tests, organic compound 

analyses, heavy metals detection and gas pollutants (Figure 3). 

Figure 3. Potential environmental applications of screen printed sensors. 
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5.1. Water Quality Tests 

It is of vital importance to monitor source water and the aquatic systems that can be contaminated by  

industrial waste, sewage treatment plants and runoff from urban and agricultural lands. Water quality 

monitoring is mainly based on the measurement of the physical, chemical and bacteriological characteristics 

of water. The physical elements of analysis include monitoring of temperature, pH and conductivity, while 

chemical analyses measure oxygen, alkalinity, nitrogen and phosphorus compounds. Thousands of 

emerging contaminants may be present in water resources, including those used for drinking water 

production, therefore, the development of cost-effective devices for on-line and continuous monitoring of 

water quality is highly desirable. In this context, the use of screen printed electrodes to monitor pH changes 

has attracted great attention to replace the commonly used methods for testing pH changes. Koncki et al., 

designed a plastic, fully screen-printed, disposable pH sensor based on ruthenium dioxide by the application 

of a thick-film technology. The electrodes enable fast measurements, with good sensitivity in acidic and 

neutral solutions [47]. pH sensors with both printed reference and working electrodes on one substrate are 

reported in the literature [46], however this concept led to printing of the three electrode system for pH 

sensing with enhanced sensitivity as compared to the two electrode system [48]. Kampouris et al. designed 

a screen printed pH sensor by incorporating the pH sensitive phenanthraquinone moiety which undergoes a 

Nernstian potential shift with pH, and the pH insensitive dimethylferrocene one which acts as an internal 

reference. This generic approach offered a calibration-less and reproducible approach for portable pH 

measurements with the possibility of miniaturization, allowing incorporation into existing sensing  

devices [49]. Betelu et al., investigated the applicability of CeO2-based screen printed electrodes for 

monitoring the pH of the COx pore water. However, this study was limited to the pH range between 5.5 and 

13.2 [50]. Xiong et al. designed a calibration-less sensor based on nitrosophenyl-modified edge plane 

pyrolytic electrodes and screen printed electrodes to monitor pH changes [51]. Dissolved oxygen 

concentration is also another parameter that can be employed to test water quality. Zen et al., developed an 

efficient photocatalytic amperometric sensor for the determination of dissolved oxygen in phosphate buffer 

solution using a disposable copper-plated screen-printed carbon electrode. Real sample assays for 

groundwater and tap water were also consistent with those measured by a commercial dissolved oxygen 

meter [52]. Various modified screen printed sensors have been demonstrated as potential candidates to 

measure the chemical oxygen demand and biochemical chemical oxygen demand for various environmental  

studies [53]. 

Nitrate is also an important analyte for environmental and human health monitoring thus its 

detection and quantification is very important. In this regards, some screen printed electrodes have been 

designed and used to detect low levels of toxic ions. Moreover, microelectrodes in combination with 

screen printing technology have been employed to measure the nitrate level in water samples [54,55]. For 

example, Lin et al., fabricated poly (3,4-ethylenedioxythiophene) and PEDOT/multi-wall carbon 

nanotubes (PEDOT/MWCNTs)-modified screen-printed carbon electrodes (SPCEs) and studied their 

catalytic properties for nitrite measurement. The developed sensor was also applied to the 

determination of nitrite concentration in tap water samples [56]. Monchindu et al., electropolymerised 

aniline doped with polyvinyl sulphonate on screen printed carbon electrodes. The designed  

electrochemical sensors exhibited good analytical characteristics for nitrate detection [57]. Lin et al.,  

investigated the oxidative electrochemistry of nitrite on a poly(3,4-ethylenedioxythiophene)/iron 
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phthalocyanine/multi-wall carbon nanotubes-modified screen-printed carbon electrode. The developed 

sensor was also applied for the determination of nitrite in tap water samples [58]. Metters et al. reported 

the fabrication of screen printed graphite micro-band electrodes which were electrochemically 

characterized and critically explored in electro-analytical applications for the sensing of  

nitrite [55] .Saljukis et al., fabricated manganese dioxide screen printed graphite electrodes for  

electro-analytical sensing purposes. The prepared sensors exhibited attractive performances as  

electrocatalysts for the sensing of nitrite ions with detection limits comparable or lower than those 

obtainable with other electrochemical sensors [59]. 

Similarly, the hydrophilic nature of phosphate ions makes them difficult to detect in water analysis. 

Ion selective electrodes, due to their ability to measure various species in turbid and colored medium, 

have been appeared as the prominent tools to measure phosphate ions for routine water sample analysis. 

Screen printed carbon paste and conventional PVC membrane electrodes have been integrated in ion 

selective sensors for phosphate ion analysis [60]. Some of the recently developed screen printed sensors 

for water quality are listed in Table 1. 

Table 1. Some of the recently developed screen printed sensors for water quality tests. 

Analyte Modifier Detection Method Ref. 

Liquids Iridium and ruthenium oxide pH sensor [61] 

Liquids Phenanthraquinone moiety pH sensor [49] 

Hydroxide ions Nickel oxide bulk pH sensor [48] 

Dissolved oxygen CdS modified Cathodic electrochemiluminescenc [53] 

Nitrite Poly(dimethylsiloxane) Amperometric detection [54] 

Nitrite Shallow recessed unmodified Amperometric detection [25] 

Phosphate Bisthiourea ionophores Amperometric detection [60] 

Nitrite Carbon Black Multi-electrochemical methods [62] 

Phosphate 
Electrocatalyst cobalt 

phthalocyanine 
Amperometric [63] 

Phosphate Cobalt phthalocyanine Amperometric [64] 

Nitrate Modified screen printed electrodes Electrochemical detection [65] 

Nitrate 
polymer (poly(vinyl alcohol)) 

modified 
Amperometric [66] 

Nitrate 
commercial screen-printed 

electrochemical cell 
Amperometric [67] 

5.2. Organic Compounds 

Phenols are organic compounds broadly employed in the chemical, petrochemical, pharmaceutical, 

pesticide, pulp and paper, textile, metallurgic, resin and plastic, and pulp and paper industries. Phenol 

poisoning by skin absorption, inhalation of vapors or ingestion causes accumulation and damage to the 

brain, kidneys, liver, muscle, and eyes, as well as necrosis [21]. Therefore, detection of phenolic 

compounds and their derivatives is highly desirable to meet the corresponding environmental 

challenges. Even though the standardized methods are able to obtain accurate results for a wide range 

of phenolic compounds, conventional approaches are time-consuming and cost-intensive. Furthermore, 

they require large volumes of toxic organic solvents such as methylene chloride, acetone, and 
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methanol. Consequently, there is a demand for the development of reliable, portable, sensitive, simple 

and cost-effective methods for the fast detection of phenolic compounds. Electrochemical sensors 

based on screen printed electrodes have been used as low cost, simple, sensitive and disposable tools 

for in situ monitoring of phenolic compounds. The possibility of direct electrochemical oxidation of 

these phenolic compounds at the screen printed electrode facilitates their detection [68], Many 

modification strategies and immobilization methods have been reported in the literature to design 

innovative electrochemical sensors for monitoring phenolic compounds [69–72]. 

Pesticides are released intentionally into the environment, and through various processes can 

contaminate the environment. Although pesticides are associated with many health hazards, there is a 

lack of monitoring of these contaminants. Traditional chromatographic methods—high-performance 

liquid chromatography, capillary electrophoresis, and mass spectrometry—are effective for the analysis 

of pesticides in the environment, but have certain limitations such as complexity, time-consuming 

sample preparation, and the requirement of expensive apparatus and trained persons to operate them. 

Over the past decades, acetylcholinesterase (AChE) inhibition-based biosensors have emerged as 

simple, rapid, and ultra-sensitive tools for pesticide analysis in environmental monitoring, food safety, 

and quality control. These biosensors have the potential to complement or replace the classical 

analytical methods by simplifying or eliminating sample preparation and making field-testing easier 

and faster with a significant decrease in cost per analysis [73,74]. Based on the inhibition mechanism of 

the pesticide, various electrochemical biosensors based on screen printed electrodes have been 

constructed to analyse water and soil samples for the presence of pesticides. Prussian Blue, carbon 

nanotubes, cobalt phthalocyanine and conductive polymers have been successfully integrated as 

mediators in screen printed electrochemical biosensors for pesticide detection [75–78]. 

Despite the use of modern, less persistent agrochemicals, herbicide residues and herbicide 

metabolites in water are a serious environmental problem. Even when used appropriately, water soluble 

herbicides can be found in surface waters, ground waters, and tap water. For this reason, the monitoring 

of herbicides and herbicide metabolites is important to ensure the quality of water. Electrochemical 

immunosensors based on screen printed carbon electrodes are used for single shot determination of 

herbicides, eliminating the cleaning and reuse of components [79,80]. However, the immunoassays 

undergo some drawbacks such as the time consuming antibody production process and the possibility of 

cross-reactivity. Alternatively, photosynthetic electrochemical biosensors based on screen printed electrodes 

have been proposed, and successfully implemented for herbicide detection [81–83]. Polycyclic aromatic 

hydrocarbons (PAHs) are a large group of organic compounds with two or more fused aromatic rings. 

They have a relatively low solubility in water, but are highly lipophilic. Aromatic compounds can 

interact with graphite walls and thus stack onto carbon materials through non-covalent binding. After 

concentrating polyaromatic hydrocarbons on screen printed electrodes, an operating potential can be 

applied for the individual electrochemical detection of a specific aromatic compound [84–86]. 

Similarly, immunosensor approaches based on screen printed electrodes have also been reported in the 

literature for a mixture of individual polyaromatic hydrocarbon compounds. Nevertheless, the very 

similar structures of polyaromatic hydrocarbon compounds make difficult the production of a specific 

antibody for only one polyaromatic hydrocarbons. Future work may focus on the integration of various 

antibodies within a single screen printed sensor to get different signals and detailed information 

regarding polyaromatic hydrocarbon mixtures. Sensitive and decentralized analysis of antibiotic residues 
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in environmental samples is also high desirable. Tetracyclines are important classes of antibiotic that 

are detected by employing screen printed electrodes. Immunoassays in combination with nanoparticles 

on screen printed electrodes have shown great potential in the development of high sample throughput 

screening systems for antibiotics in environmental samples [87,88]. Table 2 provides examples of the 

some of the recently developed screen printed sensors for organic compounds (Table 2). 

Table 2. Examples of the some of the recently developed screen printed sensors for organic 

compounds detection in environmental samples. 

Analyte Modifier Detection Method Ref. 

Organophosphate 
Poly(3,4-ethylenedioxythiophene) 

(PEDOT) 
Amprometric [76] 

Organophosphate 

pesticides 
Cobalt phthalocyanine Chronoamperometry [89] 

Organophosphorus Cysteamine self-assembled monolayer Amprometric [90] 

Organophosphorus and 

Carbamate Pesticides 
Unmodified Amperometry, flow system [91] 

Aminophenol isomers Untreated SPCE Voltammetric [21] 

Organophosphorus 

Pesticide 

Single-walled carbon nanotubes— 

Co phtalocyanine 
Amperometry [79] 

Organophosphorus 

Pesticide Dichlofenthion 
Nanometer-Sized Titania Photoelectrochemical [81] 

Herbicide isoproturon Unmodified Amperometric [92] 

Herbicide Magnetic nanoparticles Amperometric [83] 

Picric acid and atrazine Self-assembled monolayer Photo-electrochemical [93] 

Chlorsulfuron Gold (Au) metal ions Stripping voltammetry [80] 

Phenol and catechol Bismuth nanoparticles Amperometric measurements [94] 

Phenol and pesticide Iridium oxide nanoparticles Electrochemical measurement [95] 

Phenol Carbon Black Paste Amperometric [96] 

Phenolic compounds 
Nano-HA-chitosan nanocomposite-

modified gold electrode 
Amperometric [97] 

Phenolic compounds Screen-printed PEDOT:PSS electrodes Amperometric [98] 

Carbamate Insecticide 
Prussian Blue-Multi-Walled  

Carbon Nanotubes 
Amperometric [99] 

5.3. Heavy Metals 

Due to the major negative impact of heavy metal ions toward human health and the environment, 

even at low concentrations, the development of simple, fast and not expensive detection methods for 

heavy metals is a major challenge for scientists. Among the different analytical methods for the 

analysis of heavy metal ions, the methods based on electrochemical sensors are widely applied for the 

detection of metals. Among toxic heavy metals, lead continues to be one of the most problematic. 

Despite considerable efforts to identify and eliminate Pb exposure sources, this metal still remains a 

significant health concern. Pb(II) is one of the heavy metals that has been detected with improved 

sensitivity by using modified carbon, bismuth, gold or other materials. These modifiers were integrated 

onto the surface of screen printed electrodes to make portable and disposable devices, improving their 
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suitability for on-site analysis [100–103]. However, such approaches exhibit shortcomings such as 

necessity of acid or alkaline working media. Alternatively, mercury has the potential to perform 

analysis over a wide range of pH, and can be used as a possible screen printed electrode modifier for 

trace metal detections. As a proof of concept, mercury-modified screen printed electrodes have been 

employed to detect low levels of Cd(II) in environmental samples [104,105]. 

Mercury ions, the most stable form of inorganic mercury, are highly toxic environmental pollutants 

and have serious medical effects. Therefore, it is highly desirable to develop sensitive methods for the 

detection of Hg
2+

. Indeed, there have been numerous reports on optical Hg
2+

 detection by using Hg
2+

 

sensitive fluorophores or chromophores, however, most of these fluorophores or chromophore-based 

Hg
2+

 sensors only work in organic media, which cannot be directly used to detect mercury contaminants in 

aqueous media. Bare gold or modified gold electrodes are normally used for the detection of Hg
2+

 due 

to their strong affinity for Hg
2+

 [106,107]. Commercial screen printed electrodes are reported for simple 

detection of Hg
2+

 in water samples. Nanostructured carbon black and screen printed electrodes 

modified with conducting polymer layers have also been designed for the trace level measurement of 

Hg
2+

 in water samples [108,109]. Arsenic is also a common compound found in drinking water, 

especially in some Asian countries. The toxicity of arsenic is greatly dependent on its oxidation state 

since As(III) is 50 times more toxic than arsenate due to its reactions with enzymes involved in human 

metabolism. Many detection methods have been developed for determination of such levels of arsenic. 

Among these methods, electrochemical methods provide accurate measurements of low concentrations 

of metal ions at ppb levels with rapid analysis times and low cost instrumentation. Screen printed 

electrodes modified with nanoparticles have been utilized to detect arsenic in water environments [110]. 

However, to avoid interferences from other metals, enzymatic biosensors based on screen printed electrodes 

for the measurement of arsenic in water samples have also been reported in the literature [111]. Designing 

screen printed sensors for simultaneous detection of various metals is also interesting for time and cost 

reasons. Screen printed electrodes modified with gold nanoparticles/gold films have also been reported 

for stripping voltammetric determination of mercury (II) and lead (II) [112]. Selected and recently 

developed screen printed sensors for heavy metals detection are listed in Table 3. 

Table 3. Selected and recently developed sreen printed sensors for heavy metal detections. 

Analyte Modifier Detection Method Ref. 

Pb2+
 and Cd2+

 screen-printed antimony and tin anodic stripping detection [113] 

Cu2+ 
Macrocyclic Polyamine Modified 

Screen-Printed Electrodes 

Square wave anodic stripping 

voltammetry 
[114] 

Cd2+, Cu2+ Diazonium modified electtrodes Amperometric detection [115] 

Pb2+
 and Cd2+ Bismuth-coated Stripping voltammetry [116] 

Pb2+ Reduced graphene oxide 
Square wave anodic stripping 

voltammetry 
[117] 

Zn2+, Cd2+ and 

Pb2+ 
Multiwalled carbon nanotubes 

Differential pulse stripping 

voltammetry 
[118] 

Hg2+ and Pb2+ Polypyrrole/carbonaceous nanospheres 
Square wave anodic stripping 

voltammetry 
[119] 

Pb2+
 and Cd2+ Bismuth–carbon nanocomposites 

Differential electrochemical 

methods 
[120] 
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Table 3. Cont. 

Analyte Modifier Detection Method Ref. 

Pb2+ Bismuth-antimony film Stripping voltammetric [121] 

Pb2+ 4-carboxyphenyl-grafted 
Anodic Square Wave 

Voltammetry 
[122] 

As(III) Gold electrode 
Sequential injection/anodic 

stripping voltammetry 
[123] 

As(III) Nanoparticles Linear sweep voltammetric [124] 

As(III) Modified screen printed electrodes Amperometric [111] 

Cd2+, Pb2+, Cu2+ 

and Hg2+ ions 
Heated graphitenanoparticle Electrochemical stripping [125] 

Hg2+ Gold nanoparticles-modified 
Square wave anodic stripping 

voltammetry 
[126] 

Pb2+, Cu2+ and 

Cd2+ 
Mercury nano-droplets 

Square wave anodic stripping 

voltammetry 
[127] 

Pb2+ Paper disk impregnated 
One-step electrochemical 

detection 
[128] 

Cd2+ Nafion. Cd 
Square Wave Anodic 

Stripping Voltammetry 
[129] 

5.4. Gas Pollutants 

The air pollution caused by exhaust gases from automobiles has become a critical issue. In some regions, 

fossil fuel combustion is a problem as well. The principal gases that cause air pollution from automobiles 

are nitrogen oxide and carbon monoxide. Conventional and traditional methods to detect the levels of toxic 

gases include color reactions, chemiluminescence and IR absorption approaches. In comparison to these 

described methods, electrochemical gas sensor based on screen printed electrodes can provide low cost, 

easy to use and portable devices for environmental analysis. 

Carbon monoxide is a colorless, odorless, tasteless and poisonous gas mainly produced by the 

combustion of fossil fuels. Bare gold, nanoparticles particles-modified carbon and SnO2-modified carbon 

electrodes based on screen printing technology have been employed to detect the levels of this gas in 

environmental samples [130,131]. These devices have the potential to be used for in situ measurement and 

for continuous monitoring. Nitrogen oxide is a prominent air pollutant produced during high temperature 

combustion processes. The symptoms of nitrogen oxide poising appear several hours after its inhalation and 

require sensitive methods to detect it at low levels. Tin-doped and indium oxide thin films on screen printed 

electrodes have been used for the detection of nitrogen oxide in the air samples [132,133]. Volatile organic 

compounds including formaldehyde, acetone and methanol pose harmful effects to human health and 

contaminate the environment. Screen printed nanocomposite films integrated with multi-walled carbon 

nanotubes and silicon binders have been used to measure organic gases [134,135]. 

5.5. Other Environmental Pollutants 

The presence of bacteria may also pose some enteric disease problems and indirectly results in 

economic losses. Enzyme-labeled and impedimetric immunoassays based on screen printed electrodes 
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have been developed for bacterial detection in river and tap water samples without pre-concentration 

steps [136]. Screen printed micro-system have been designed for pathogen detection that serve as both 

functional and structural components, to improve the simplicity of the fabrication steps [137].  

Radio-elements are also considered as radiological and chemical toxic compounds, with their presence 

in the aquatic system needs to be monitored. Screen printing technology has efficiently contributed in 

the detection of radioelements, and screen printed sensors to monitor uranium have been reported in the 

literature [138,139]. 

6. Conclusions and Future Prospects 

As discussed in this review paper, there have been many exciting developments in the use of screen 

printing to design new types of electrochemical sensors. The combination of modern electrochemical 

systems with screen printing technology along with breakthroughs in micro-electronoics and 

miniaturization permits the introduction of powerful and potential analytical tools for effective 

monitoring of environmental pollutants. Such real time on-site monitoring methodologies have 

successfully addressed the time constraints associated with classical laboratory analysis. With the 

passage of time, electrochemical devices are becoming more and more sophisticated and versatile while 

dramatically shrinking in size and weight. Screen printed methodologies offer the advantage of 

production of simple, economical, disposable, portable and mass produced devices suitable for on-site 

analysis of environmental pollutants. Disposable screen printed electrodes have extensively improved 

the sensitivity and selectivity of the analytical approaches, especially in the detection of certain 

environmental analytes that were difficult and challenging to measure with conventional and traditional 

techniques. The field of screen printed electrodes, however, continues to grow and find new application 

domains. It is expected that future work shall focus on the integration of nanomaterials in the screen 

printed electrodes to improve the electron transfer rates, thus enhancing the analytical performance of 

the sensors. Furthermore, microchip formats may find application to improve the miniaturization 

process to decrease the analysis time, sample volumes and reagent consumption and enhance portability 

and for on-site analysis. 
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